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Chapter 1. Introduction 

The size of a biological population determines the relative importance of selection and drift 

during its evolution (Charlesworth, 2009; Lanfear et al., 2014; Lang et al., 2011; McShea and 

Brandon, 2010; Rice, 2004). This thesis aims to investigate how population size influences 

adaptation and maladaptation in asexual systems by modulating the interplay of selection and 

drift. I begin this introductory chapter with a brief discussion of how population size plays 

different roles in shaping the adaptation of asexual and sexual populations. Restricting the 

scope of this thesis to asexual systems, I discuss the importance of population size in 

influencing a variety of evolutionary aspects including the rate of adaptation, efficacy of natural 

selection, mutational meltdown, valley crossing, biological complexity, success of mutators, 

etc. This chapter focuses on the evolutionarily relevant measures of population size, with a 

particular emphasis on how fluctuating population size shapes the process of adaptation. I also 

introduce how population size can be relevant in influencing the extent of fitness trade-offs 

across environments. Highlighting the gaps in the current understanding of these topics, I end 

this chapter with an outline of the specific questions addressed in the rest of the thesis. 

In this thesis, I have used a combination of experimental evolution and individual based 

simulations to understand how population size affects the adaptive and maladaptive dynamics 

of asexual systems.  
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Chapter 2. Larger numbers can impede adaptation in asexual populations despite 

entailing greater genetic variation 

Periodic bottlenecks play a major role in shaping the adaptive dynamics of natural and 

laboratory populations of asexual microbes (Abel et al., 2015; Kawecki et al., 2012; Lenski et 

al., 1991; Wahl and Gerrish, 2001). Here I study how they affect the ‘Extent of Adaptation’ 

(EoA), in such populations. EoA, the average fitness gain relative to the ancestor, is the quantity 

of interest in a large number of microbial experimental-evolution studies which assume that 

for any given bottleneck size (N0) and number of generations between bottlenecks (g), the 

harmonic mean size (HM=N0g) will predict the ensuing evolutionary dynamics (Desai and 

Fisher, 2007; Lachapelle et al., 2015; Lang et al., 2011; Lenski et al., 1991; Rozen et al., 2008; 

Samani and Bell, 2010; Vogwill et al., 2016). However, there are no theoretical or empirical 

validations for HM being a good predictor of EoA. Using experimental-evolution with 

Escherichia coli and individual-based simulations, I show that HM fails to predict EoA (i.e., 

higher N0g does not lead to higher EoA). This is because although higher g allows populations 

to arrive at superior benefits by entailing increased variation, it also reduces the efficacy of 

selection, which lowers EoA. I show that EoA can be maximized in evolution experiments by 

either maximizing N0 and/or minimizing g. I also conjecture that N0/g is a better predictor of 

EoA than N0g. Our results call for a re-evaluation of the role of population size in predicting 

fitness trajectories. They also aid in predicting adaptation in asexual populations, which has 

important evolutionary, epidemiological and economic implications. 

This chapter has been published as the following research article:  

Chavhan, Y.D., Ali, S.I., and Dey, S. (2019). Larger Numbers Can Impede Adaptation in 

Asexual Populations despite Entailing Greater Genetic Variation. Evol. Biol. 46, 1–13. 

 

Chapter 3. Adapting in larger numbers can increase the vulnerability of Escherichia coli 

populations to environmental changes 

Larger populations generally adapt faster to their existing environment (Desai and Fisher, 2007; 

Lanfear et al., 2014; Sniegowski and Gerrish, 2010). However, it is unknown if the population 

size experienced during evolution influences the ability to face sudden environmental changes. 

To investigate this issue, I subjected replicate Escherichia coli populations of different sizes to 

experimental evolution in an environment containing a cocktail of three antibiotics. In this 
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environment, the ability to actively efflux molecules outside the cell is expected to be a major 

fitness-affecting trait (Morita et al., 1998; Nikaido and Pagès, 2012; Nishino et al., 2009). I 

found that all the populations eventually reached similar fitness in the antibiotic cocktail despite 

adapting at different speeds, with the larger populations adapting faster. Surprisingly, whereas 

efflux activity enhanced in the smaller populations, it decayed in the larger ones. The evolution 

of efflux activity was largely shaped by pleiotropic responses to selection and not by drift. This 

demonstrates that quantitative differences in population size can lead to qualitative differences 

(decay/enhancement) in the fate of a character during adaptation to identical environments. 

Furthermore, the larger populations showed inferior fitness upon sudden exposure to several 

alternative stressful environments. These observations provide a novel link between population 

size and vulnerability to environmental changes. Counter-intuitively, adapting in larger 

numbers can render bacterial populations more vulnerable to abrupt environmental changes. 

This chapter has been published as the following research article:  

Chavhan, Y., Karve, S., and Dey, S. (2019). Adapting in larger numbers can increase the 

vulnerability of Escherichia coli populations to environmental changes. Evolution 73, 836–

846. 

 

Chapter 4. Minimal requirements for divergent character fates in populations adapting 

to the same environment at different sizes 

Sign epistasis is expected to be a common feature of natural fitness landscapes (Szendro et al., 

2013). Moreover, most genomes are known to have a substantial variation in the lengths of 

individual genes (Eyre-Walker, 1996; Moriyama and Powell, 1998; Wright, 1990), which 

entails that some biological characters can have more mutational supply than others. Here I use 

Wright-Fisher simulations to study the interactive effects of these two phenomena (sign 

epistasis and differential mutational supply) on the dynamics of evolution in asexual 

populations of different sizes. Specifically, I investigate the minimal set of conditions that can 

translate differences in the sizes of asexual populations adapting to the same environment into 

antagonistic fates of an important fitness-affecting character. Such character divergence was 

observed in terms of efflux activity in Chapter 3 (Chavhan et al., 2019). I find that the 

simultaneous presence of sign epistasis and differential mutational supply are essential to 

obtain divergent evolution of a fitness-affecting character during adaptation to the same 

environment. Importantly, the removal of any one of these two conditions results in convergent 
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(and not divergent) character evolution. These results have important implications for 

understanding how selection makes large and small asexual population take different adaptive 

paths, particularly in the presence of sign epistasis. 

This chapter is being written up as the following research article: ‘Chavhan, Y., Shah, S., and 

Dey, S. (2019). Minimal requirements for divergent character fates in populations adapting to 

the same environment at different sizes (Manuscript under preparation).’ 

 

Chapter 5. Larger Escherichia coli populations suffer greater fitness trade-offs and 

undergo more ecological specialization 

Evolutionary studies over the last several decades have invoked fitness trade-offs to explain 

why species prefer some environments to others (Agrawal et al., 2010; Futuyma and Moreno, 

1988; Levins, 1962, 1968). However, the effects of population size on trade-offs and ecological 

specialization remain largely unknown. To complicate matters, trade-offs themselves have 

been visualized in multiple ways in the literature (Andersson and Hughes, 2010; Bell and 

Reboud, 1997; Bono et al., 2017; Jessup and Bohannan, 2008; Kassen, 2014; Lee et al., 2009; 

Schick et al., 2015). Thus, it is not clear how population size can affect the various aspects of 

trade-offs. To address these issues, I conducted experimental evolution with Escherichia coli 

populations of two different sizes in two nutritionally limited environments and studied fitness 

trade-offs from three different perspectives. I found that larger populations evolved greater 

fitness trade-offs, regardless of how trade-offs are conceptualized. Moreover, although larger 

populations adapted more to their selection conditions, they also became more maladapted to 

other environments, ultimately paying heavier costs of adaptation. To enhance the 

generalizability of this study, I further investigated the evolution of ecological specialization 

across six different environmental pairs and found that larger populations specialized more 

frequently and evolved consistently steeper reaction norms of fitness. This is the first study to 

demonstrate a relationship between population size and fitness trade-offs and the results are 

important in understanding the population genetics of ecological specialization and 

vulnerability to environmental changes.  

This chapter has been adapted from the following research article: 

 ‘Chavhan, Y., Malusare, S., and Dey, S. (2019).  Larger Escherichia coli populations suffer 

greater fitness trade-offs and undergo more ecological specialization (Under review).’ 
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Chapter 6. An interaction of environmental heterogeneity and population size explains 

the rarity of detectable fitness costs 

Although fitness costs are a fundamental assumption of a large number of models of evolution 

(Futuyma and Moreno, 1988; Levins, 1962, 1968; Lynch and Gabriel, 1987; Stearns, 1989), 

several evolutionary studies spanning diverse taxa have failed to detect them (Coustau et al., 

2000; Friman and Buckling, 2013; Nidelet and Kaltz, 2007; Rausher, 1984; Vasilakis et al., 

2009; Via, 1984). Explaining such rarity of detectable fitness costs has been a major challenge 

for evolutionary studies over the last two decades (Agrawal et al., 2010; Fry, 1996; Joshi and 

Thompson, 1995). Chapter 5 showed that when evolution occurs in a homogenous 

environment, population size plays a key role in shaping fitness trade-offs. Moreover, a recent 

meta-analysis of microbial experimental evolution studies suggested that environments 

imposing a single (homogenous) selection pressure frequently lead to fitness costs that can be 

avoided in heterogeneous environments (which fluctuate across multiple individual selection 

pressures) (Bono et al., 2017). However, it is unknown if and how population size and 

environmental heterogeneity interact with each other to shape fitness costs. To investigate this 

issue, I conducted experimental evolution with Escherichia coli populations of two different 

sizes in heterogenous and homogenous environments and studied the evolution of fitness costs. 

I demonstrate a previously unreported interplay of population size and environmental 

heterogeneity that determines the evolutionary emergence (or avoidance) of fitness costs. I 

show that population size has opposite relationships with fitness costs in homogenous versus 

heterogenous environments. Interestingly, large population size and environmental 

heterogeneity led to fitness cost avoidance when present together but not on their own. 

Moreover, based on these observations, I discuss how fitness costs can be avoided even when 

most mutations show antagonistic pleiotropy. Finally, I show that heterogenous environment 

can make larger populations avoid fitness costs despite giving rise to steeper reaction norms of 

fitness. Taken together, these observations provide a novel explanation for the rarity of fitness 

detectable costs in evolutionary and ecological studies. 

This chapter is being written up as the following research article: ‘Chavhan, Y., Malusare, S., 

and Dey, S. (2019). An interaction of environmental heterogeneity and population size explains 

the rarity of detectable fitness costs (Manuscript under preparation).’ 
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Chapter 7. Conclusions, implications, and future avenues 

Here I discuss the major implications of the observations made in this thesis. I also introduce 

some possible future extensions of the work presented here.  
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Since the origin of life on planet Earth more than 3 billion years ago, the process of organismal 

evolution has been giving rise to a nearly limitless diversity of life forms. The ultimate source 

of such diversity resides in the imperfect fidelity in the process of genetic material replication 

(Futuyma, 2005; Gillespie, 2002; Haldane, 1932), which leads to spontaneous errors 

(mutations) that are essentially random with respect to their effects on the organisms’ ability 

to survive and reproduce in their immediate environments (McShea and Brandon, 2010). The 

biological variation thus generated is, in turn, acted upon by random genetic drift on the one 

hand, and the natural selection on the other. While genetic drift is blind to fitness and thus 

changes the compositions of biological population randomly (Futuyma, 2005), natural 

selection causes non-random changes in the population-wide distributions of individuals based 

on the latter’s fitness in the environmental context in question (Rice, 2004). Therefore, the 

interplay of these two fundamental forces of evolution (drift and selection) is key to 

understanding how evolution unfolds to give rise to the diversity of life as we know it. One of 

the parameters known to determine the relative importance of selection and drift is the size of 

the population (Charlesworth, 2009; Lanfear et al., 2014; Lang et al., 2011; McShea and 

Brandon, 2010; Rice, 2004). This thesis aims to investigate how population size influences 

adaptation and maladaptation in asexual systems by modulating the interplay of selection and 

drift.   

In general, whereas drift is more powerful in smaller populations, selection is more effective 

in larger populations (Desai and Fisher, 2007; Futuyma, 2005; Gillespie, 2002; Ohta, 1992). 

Consider a population (sexual or asexual) where N individuals can successfully pass on their 

genetic material to the next generation. In such a population, a mutation of fitness effect s can 

be categorized into three different classes depending on the whether its evolution is shaped 

largely by the deterministic force of selection or by random drift (Lanfear et al., 2014): If 0 ≈ 

|s| << 1/N,  the mutation’s fate is governed largely by random drift and selection has negligible 

effect. If |s| ≈ 1/N, both selection and drift play important roles in shaping the evolutionary fate 

of the mutation. If |s| >> 1/N, the mutation’s fate is determined primarily by selection and drift 

has a relatively minor role. 

Interestingly, a de novo mutation needs to rise to large enough frequencies in order to escape 

random genetic drift before selection can start influencing its fate. In haploid populations, the 

probability that a beneficial mutation of effect s would survive drift is equal to s (Desai et al., 

2007; Haldane, 1927). However, once the mutation in question has survived the stochastic 

effects of drift, sexual and asexual populations pose fundamentally different conditions and 
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challenges to the mutation’s enrichment via natural selection (Rice, 2004). In sexual 

populations, the eventual fixation (rise to frequency = 1) of a beneficial mutation that has 

survived drift is not only certain but also independent of the population size (Haldane, 1927; 

Sniegowski and Gerrish, 2010). On the other hand, in asexual populations, there is no guarantee 

that a mutation that has survived drift would eventually fix. Importantly, in asexual 

populations, the fixation probability of a beneficial mutation that has survived drift depends, 

among other parameters, on the population size (Desai et al., 2007; Sniegowski and Gerrish, 

2010). Thus, theory suggests that population size plays different roles in shaping the adaptation 

of asexual and sexual populations. In this thesis, I study the effects of population size on the 

microevolutionary processes of adaptation and maladaptation in asexual populations. Here I 

present a brief review of the extant literature on these topics. I first highlight the gaps in the 

current understanding in these areas and then present an outline of the specific questions 

addressed in the subsequent chapters. 

In asexual systems, for a given rate of spontaneous mutation, larger populations have access to 

greater amounts of variation (Cvijović et al., 2018; Neher, 2013; Sniegowski and Gerrish, 

2010). Unsurprisingly, therefore, the size of an asexual population is thought to influence a 

large number of evolutionary processes (Fig. 1.1). For example, larger asexual populations are 

generally expected to adapt faster (Cvijović et al., 2018; Lanfear et al., 2014; Sniegowski and 

Gerrish, 2010). This expectation is primarily based on two notions. First, larger populations 

can not only access more variation, they can also arrive at relatively fitter mutations that may 

remain inaccessible to smaller populations (Desai et al., 2007; Neher, 2013). This is because 

only a small fraction of all possible mutations are beneficial in any given environment and 

among beneficial mutations, those with greater effect sizes are generally rarer (Eyre-Walker 

and Keightley, 2007; Fisher, 1930; Kassen and Bataillon, 2006). Second, natural selection 

enriches beneficial mutations and eliminates deleterious ones more effectively in larger 

populations (Charlesworth, 2009; Rice, 2004). Moreover, since weakly deleterious mutations 

can become fixed via drift, smaller asexual populations (in which drift is relatively more 

powerful) are more likely to irreversibly accumulate deleterious mutations (Felsenstein, 1974; 

Metzger and Eule, 2013; Muller, 1964). Such irreversible accumulation (conventionally known 

as Muller’s ratchet) can potentially drive small asexual populations to extinction (Chipkin et 

al., 2018; Lynch et al., 1993, 1995). However, larger asexual populations are not always 

expected to have an evolutionary advantage over smaller ones, particularly if the fitness 

landscape (the regression of fitness on the space of genotypes) is rugged and not smooth 
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(Handel and Rozen, 2009; Szendro et al., 2013a; Vahdati and Wagner, 2017). On rugged fitness 

landscapes, populations often need to cross fitness valleys in order to reach higher fitness peaks 

(Rozen et al., 2008; Szendro et al., 2013a). Theory predicts that the probability of valley 

crossing is  a  non-monotonic function of population size, with both very small and very large 

populations being likely to cross fitness valleys but intermediate-sized populations likely to be 

trapped on local fitness peaks (Ochs and Desai, 2015). Moreover, since population size plays 

a key role in deciding the importance of selection over stochastic drift, it  is also a key 

determinant of the repeatability of evolution (Lachapelle et al., 2015; Szendro et al., 2013b; de 

Visser and Krug, 2014). The existing theory presents a clear expectation regarding the 

relationship between population size and the repeatability of evolution: the latter should be 

maximum at a range of population sizes where Nµ2 << 1 << Nµ and much lower when Nµ < 1 

or Nµ2 > 1 (where µ is the rate of spontaneous mutation) (Szendro et al., 2013b; de Visser and 

Krug, 2014). Interestingly, population size has also been shown to exhibit a similar non-

monotonic relationship (albeit within different range of N) with biological complexity (LaBar 

and Adami, 2016). Finally, the evolutionary success of mutators (genotypes that elevate the 

rates of spontaneous mutation) is also expected to be non-monotonically dependent on 

population size. Specifically, when NUbln(Ns) < 1, (where Ub is the rate of beneficial mutations 

and s is the selection coefficient) mutator fixation is likelier in larger populations. However, 

when NUbln(Ns) > 1, mutators are more likely to spread in smaller populations.  

 

Fig. 1.1. Population size is an important parameter that influences a diverse set of evolutionary 

processes in asexual systems. 
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All the discussion regarding population sizes up to this point has not touched upon the 

following questions: What exactly does the phrase ‘population size’  refer to? Which measure 

of population size is appropriate while making statements such as ‘larger populations generally 

adapt faster’? Can there be a common measure of population size that can be relevant in all 

population-genetic contexts? The next section addresses these issues.  

 

1.1. Evolutionarily relevant measures of population size  

The concept of effective population size, which offers a measure of the power of random 

genetic drift in biological populations (Wright, 1931), aids in answering the above questions. 

Most models in population genetics and evolution deal with idealized populations that do not 

fluctuate in size over time and involve the transmission of alleles from one generation to the 

next via random sampling (Charlesworth, 2009). There are several other ways a population can 

be idealized, depending upon the assumptions of the model in question (Kimura and Crow, 

1963). However, real biological populations mostly depart from idealized populations in 

several important ways, which is the primary reason behind conceptualizing the idealization. 

The effective size of a real biological population is the size of an idealized population that 

would show the same population genetic behaviour as the real population in question (Kimura 

and Crow, 1963; Rice, 2004). This also means that the effective size of a given biological 

population is dependent on the population genetic quantity of interest. Indeed, one can define 

several different effective population sizes for the same biological population, depending upon 

the population genetic context (Ewens, 1979; Rice, 2004; Whitlock and Barton, 1997). 

Moreover, these various effective sizes of the same real population represent different values, 

each conveying a different information about the real population in question (Rice, 2004). In 

general, lower the effective size of a population, the more strongly it is affected by random 

genetic drift (Charlesworth, 2009; Lanfear et al., 2014; Rice, 2004).  

Most of the theoretical studies discussed up to this point deal with asexual populations whose 

size (= N) remains constant across generations (Desai and Fisher, 2007; Gerrish and Lenski, 

1998; Jain et al., 2011; Ochs and Desai, 2015; Szendro et al., 2013b; Weissman et al., 2009; 

Wilke, 2004). These theoretical populations are thus themselves idealized in their own way. 

However, the experiments that test the predictions of such theoretical studies involve asexual 

populations which experience substantial changes in their sizes over time (Cvijović et al., 2018; 

Kawecki et al., 2012). When the population in question undergoes changes in its size across 
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generations while retaining other aspects of an idealized population, its effective size (in terms 

of the variance in allele frequencies) is equal to the harmonic mean (or Ne = HM) of its 

population sizes over the course of evolution (Charlesworth, 2009; Kimura and Crow, 1963; 

Rice, 2004). In other words, the amount of drift experienced by the population in question 

would be the same as that experienced by a constant population of size Ne (= HM ).  

Interestingly, most experimental evolution studies conducted with asexual microbes employ 

populations which face a sudden reduction in their sizes (bottlenecks) at regular intervals 

during their propagation (Garland and Rose, 2010; Kassen, 2014; Kawecki et al., 2012). 

Specifically, in such populations, periods of growth are punctuated by sudden reductions 

(bottlenecks) which occur when a small sample (inoculum) from fully-grown populations is 

introduced into fresh medium in batch culture (or, equivalently, when chemostat tubes are 

changed) (Wahl and Gerrish, 2001). Furthermore, such periodic bottlenecks are also common 

in many natural asexual populations, where dissociation from hosts (e.g., during the spread of 

an infection) cause abrupt reductions in population size, which eventually grows back to larger 

numbers (reviewed in (Abel et al., 2015)). Thus, to understand how population size affects the 

extent and dynamics of adaptation in such asexual populations, it is crucial to understand the 

role played by periodic bottlenecks.  

Although the harmonic mean population size (HM) has been conventionally considered an 

appropriate measure of population size in terms of the fate of neutral mutations (Charlesworth, 

2009; Kimura, 1983), some theoretical studies posit that HM can also predict the probabilities 

of fixation of individual beneficial mutations of a given size in periodically bottlenecked 

asexual systems (Patwa and Wahl, 2008; Wahl and Gerrish, 2001). Periodic bottlenecks have 

two opposing effects on genetic variation in asexual populations. First, harsher (more severe) 

bottlenecks increase the chances of random loss of variation due to sampling errors. Second, 

harsher bottlenecks also increase the scope for periodic growth, ultimately entailing increased 

variation, the very substrate for evolution (Wahl et al., 2002). Theoretical studies have 

predicted that, when it comes to affecting the probabilities of fixation of beneficial mutations,  

the second effect (entailing increased variation) should overwhelm the first one (increasing loss 

of variation to sampling) (Heffernan and Wahl, 2002). More recent and nuanced theoretical 

studies have also predicted that increasing the harmonic mean size should lead to enhanced 

adaptation rates in terms of fixation probabilities (Campos and Wahl, 2009, 2010).  
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Although fixation probabilities are the focal quantity in most theoretical studies, it is not 

feasible to track them in most evolution experiments, even in relatively simple model systems 

like asexual microbes (Cvijović et al., 2018; Patwa and Wahl, 2008). As stated in Patwa and 

Wahl (2008), a decade ago, there was no evolution experiment that had determined fixation 

probabilities. Instead of fixation probabilities, most evolution experiments are interested in the 

dynamics of average population-wide fitness, which is an easily tractable quantity (Cvijović et 

al., 2018; de Visser and Rozen, 2005; Desai et al., 2007; Kassen, 2014; Kawecki et al., 2012; 

Lachapelle et al., 2015; Lenski et al., 1991; Rozen et al., 2008; Samani and Bell, 2010). 

Although a recent study determined fixation probabilities in populations of different sizes by 

conducting whole-genome-whole-population sequencing at several time points during 

experimental evolution, it also determined the dynamics of average fitness increase (Lang et 

al., 2013). Curiously, most studies concerned with quantities like average fitness increase in a 

given time (or the rate of increase in average fitness) also use HM as the measure of population 

size despite the absence of any theoretical or empirical justification to do so (de Visser and 

Rozen, 2005; Desai et al., 2007; Lachapelle et al., 2015; Lang et al., 2013; Lenski et al., 1991; 

Rozen et al., 2008; Samani and Bell, 2010). Most asexual microbial populations that are 

employed in evolution experiments are large enough to undergo clonal interference (a 

phenomenon where multiple independently arising beneficial mutations compete with each 

other within an asexual population) (Bataillon et al., 2013; Cvijović et al., 2018; Sniegowski 

and Gerrish, 2010). In such populations, fixation probabilities decrease with increasing 

population sizes but the rate of average fitness change increases with increase in population 

size (Sniegowski and Gerrish, 2010). Therefore, it is not obvious that the measure of population 

size relevant for predicting fixation probabilities would also predict the rate of average fitness 

gain. Clearly, direct experimental and/or theoretical tests are required to verify if HM can 

indeed be an appropriate predictor of the speed of average fitness increase. If HM cannot predict 

the trajectories of average fitness, we need to come up with measures of populations size that 

can do so. This is the topic of Chapter 2 of this thesis.  

Up to this point, this chapter has dealt with phenomena and processes that are known to be 

influenced by population size (Fig. 1.1). In the next section, I introduce two interrelated aspects 

of evolution that can have potential relationships with population size, namely fitness trade-

offs and vulnerability to environmental change. The relationships of these two aspects with 

population size have received scant attention in the existing literature and are the topics of 

Chapters 3 to 6.    
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1.2. The effects of population size on fitness trade-offs and vulnerability to environmental 

change 

When a biological population adapts to a given environment for a certain number of 

generations, there are no reasons to assume that it would become similarly adapted to other 

environments that have not been encountered during this period (Anderson et al., 2013; Bono 

et al., 2017; Cooper, 2014; Kassen, 2002, 2014). As a matter of fact, such a population may 

even become maladapted in certain environments (Andersson and Hughes, 2010; Bono et al., 

2017; Lee et al., 2009). Evolutionary studies since the early 1960s have invoked the concept 

of fitness trade-offs to explain such incongruities in fitness changes across environments 

(Agrawal et al., 2010; Futuyma and Moreno, 1988; Levins, 1962, 1968), where it is assumed 

the jack-of-all-trades is a master-of-none (MacArthur, 1984). Indeed, such trade-offs are a basic 

assumption in a majority of theoretical studies that deal with multiple environments 

(Rodríguez-Verdugo et al., 2014). Moreover, fitness trade-offs are the basis of ecological 

specialization, which explain why species prefer some environments over others (Bono et al., 

2017; Fry, 1996; Kassen, 2002). The large number of evolutionary studies dedicated to 

understanding fitness trade-offs notwithstanding, it still remains largely unknown how such 

trade-offs are shaped by a key population-genetic parameter like population size. Specifically, 

no experimental evolution studies of fitness trade-offs have been carried out with population 

size as a variable treatment, an observation that has been made many times in the literature 

(Bataillon et al., 2013; Cooper, 2014; Kawecki et al., 2012; Kraemer and Boynton, 2017). The 

absence of such studies precludes any direct tests of a potential relationship between population 

size and fitness trade-offs. Furthermore, as described in Chapter 5, fitness trade-offs have 

themselves been studied using several different perspectives that are not always consistent with 

each other. This has contributed to the lack of understanding of the population genetics of 

fitness trade-offs and the resulting ecological specialization.  

There are several reasons to expect a significant effect of population size on fitness trade-offs. 

As described earlier, adaptation in large asexual populations is likely to be driven by rare large-

effect beneficial mutations that are not explored by small populations. Interestingly, theoretical 

studies that link the size of a beneficial mutation to its deleterious pleiotropic effects have a 

rich history. Fisher was the first to suggest a relationship between the size of a mutation’s effect 

on fitness and its pleiotropic effects (Fisher, 1930). In his geometrical model of adaptation, he 
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imagined a multidimensional phenotypic space, with each dimension representing an 

orthogonal aspect of the organism’s total phenotype. His model predicted that the chance that 

a given mutation is beneficial would fall steeply with the extent of its pleiotropy (the number 

of dimensions it affects). Along somewhat similar lines, Lande constructed a model to 

investigate the behaviour of beneficial mutations of variable fitness sizes, with the key 

assumption that large-effect beneficial mutations carry considerable pleiotropic disadvantages, 

but small effect beneficial mutations carry none (Lande, 1983). Orr and Coyne (1992) 

described a model where the magnitude of pleiotropic disadvantages carried by beneficial 

mutations was proportional to the magnitude of their direct (beneficial) effects. Overall, these 

studies assume that larger beneficial mutations also lead to heavier pleiotropic disadvantages 

to fitness in environments that are not encountered by populations (Fisher, 1930; Lande, 1983; 

Orr and Coyne, 1992; Otto, 2004). Combining this assumption with the notion that larger 

populations adapt primarily via large beneficial mutations, one can expect that larger 

populations should suffer heavier pleiotropic disadvantages and should evolve bigger fitness 

trade-offs. However, the existing literature offers no formal theoretical or empirical test of this 

hypothesis. Moreover, this line of reasoning also predicts that evolving in larger numbers in an 

unchanging environment for several hundred generations should lead to greater fitness trade-

offs and render asexual populations more vulnerable to sudden changes in the environment.  

Interestingly, evolution in heterogenous environments can lead to very different fitness trade-

offs as compared to evolution in homogenous environments (Kassen, 2002; Bono et al., 2017 

and references therein). On the one hand, homogenous environments challenge populations 

with a uniform (unchanging) selection pressure, making natural selection blind to mutational 

fitness-effects in other (unexplored) environments, ultimately leading to substantial fitness 

trade-offs (Duffy et al., 2007; Kassen, 2014). On the other hand, when populations evolve in a 

heterogeneous (fluctuating) environment, selection is not blind to mutational fitness-effects in 

the several states faced during the environmental fluctuations (Bono et al., 2013, 2015). Thus, 

the magnitudes of fitness trade-offs are expected to be lower in heterogenous environments as 

compared to homogenous ones (Bono et al., 2017). Although it is possible that population size 

has qualitatively different effects on fitness trade-offs in homogenous and heterogeneous 

environments, the existing literature does not offer any experimental tests of this idea (Bataillon 

et al., 2013; Kraemer and Boynton, 2017).  
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This thesis attempts to fill the aforementioned gaps in the existing understanding of the effects 

of population size on adaptation and fitness trade-offs in asexual populations. Fig. 1.2 presents 

an outline of the thesis, highlighting the links between different chapters.  

 

 

Fig. 1.2. The topics of the different chapters in this thesis and the links between them. 

 

Chapter 2 deals with periodic bottlenecks, which play a major role in shaping the adaptive 

dynamics of natural and laboratory populations of asexual microbes. It tests how periodic  

bottlenecks influence the ‘Extent of Adaptation’ (EoA) in such populations. EoA, the average 

fitness gain relative to the ancestor, is the quantity of interest in a large number of microbial 

experimental evolution studies that assume that for any given bottleneck size (N0) and number 

of generations between bottlenecks (g), the harmonic mean size (HM = N0g) will predict the 

ensuing evolutionary dynamics. However, there are no theoretical or empirical validations for 

HM being a good predictor of EoA. Using experimental-evolution with Escherichia coli and 

individual-based simulations, this chapter shows that HM fails to predict EoA (i.e., higher N0g 

does not lead to higher EoA). This is because although higher g allows populations to arrive at 

superior benefits by entailing increased variation, it also reduces the efficacy of selection, 

which lowers EoA. The simulations also demonstrate that EoA can be maximized in evolution 

experiments by either maximizing N0 and/or minimizing g. Finally, this chapter proposes and 
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demonstrates that N0/g is a better predictor of EoA than N0g. These results call for a re-

evaluation of the role of played by  periodic bottlenecks in shaping fitness trajectories of 

asexual populations. They also aid in predicting adaptation in such populations, which has 

important evolutionary, epidemiological and economic implications.  

Chapter 3 investigates how the population size experienced during evolution influences the 

ability of asexual systems to face sudden environmental changes. To this end, it follows up on 

the evolution experiment of Chapter 2, in which replicate Escherichia coli populations of 

different sizes had been subjected to experimental evolution in an environment containing a 

cocktail of three antibiotics. In this environment, the ability to actively efflux molecules outside 

the cell is expected to be a major fitness-affecting trait. Surprisingly, we found that whereas 

efflux activity enhanced in the smaller populations, it decayed in the larger ones. This evolution 

of efflux activity was largely shaped by pleiotropic responses to selection and not by drift. This 

demonstrates that quantitative differences in population size can lead to qualitative differences 

(decay/enhancement) in the fate of a character during adaptation to identical environments. 

Furthermore, the larger populations showed inferior fitness upon sudden exposure to several 

alternative stressful environments. These observations provide a novel link between population 

size and vulnerability to environmental changes. Counter-intuitively, adapting in larger 

numbers can render bacterial populations more vulnerable to abrupt environmental changes. 

Chapter 4 presents generalizable individual-based simulations that aim to replicate an 

interesting observation made in Chapter 3 (that differences in the sizes of asexual populations 

adapting to the same environment can translate into antagonistic fates of an important fitness-

affecting character). To this end, we used Wright-Fisher simulations to evolve asexual 

populations on a two-locus three-allele fitness landscape with two key conditions: (1) 

unidirectional sign epistasis (where the first locus shows sign epistasis on the second locus’ 

background but the fitness-effects of the second locus are independent of the first one) and (2) 

differential mutational supply across the two loci. Then we relaxed the two conditions, both 

singly and in combination to arrive at the minimal set of requirements under which a fitness-

affecting focal character can evolve divergently in populations of different sizes adapting to 

the same environment. We find that the simultaneous presence of both conditions (sign 

epistasis and unidirectional mutational supply) are essential to obtain antagonistic evolution of 

a fitness-affecting character. Specifically, removal of any one of these two conditions results 

in convergent (and not antagonistic) character evolution. We also show that it is important to 
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add another hypostatic locus to the model to match all the aspects of the antagonistic efflux 

evolution of Chapter 3. 

Chapter 5 deals with the effects of population size on trade-offs and ecological specialization 

in homogeneous environments. Fitness trade-offs have been visualized in multiple ways in the 

existing literature, and it is not clear how population size affects the various aspects of trade-

offs, even in relatively simple organisms like asexual microbes. To address these issues, this 

chapter presents the results of an evolution experiment conducted with Escherichia coli 

populations of two different sizes in two nutritionally limited environments for ~480 

generations. We studied fitness trade-offs from three different perspectives, and found that 

larger populations evolved greater fitness trade-offs, regardless of how trade-offs are 

conceptualized. Moreover, although larger populations adapted more to their selection 

conditions, they also became more maladapted to other environments, ultimately paying 

heavier costs of adaptation. To enhance the generalizability of our results, we further 

investigated the evolution of ecological specialization across six different environmental pairs 

and found that larger populations specialized more frequently and evolved consistently steeper 

reaction norms of fitness. This is the first study to demonstrate a relationship between 

population size and fitness trade-offs and the results are important in understanding the 

population genetics of ecological specialization and vulnerability to environmental changes. 

 

Chapter 6 provides a novel explanation for the rarity of detectable fitness costs in evolutionary 

and ecological studies. It describes an evolution experiment conducted with Escherichia coli 

populations of two different sizes in both heterogenous and homogenous nutritionally limited 

environments for several hundred generations. To the best of our knowledge, this chapter 

provides the first demonstration that population size has opposite relationships with fitness 

costs in homogenous versus heterogenous environments. On the one hand, in homogenous 

environments, larger populations evolved greater fitness costs than the smaller ones. On the 

other hand, in heterogenous environments, smaller populations suffered greater fitness costs 

than the larger ones, with the latter avoiding fitness costs across all the environmental pairs 

under consideration. The phenomenon of cost avoidance in our experiments could not be 

accounted for by any of the conventional explanations for the rarity of costs in the existing 

literature. Instead, we found that large population size and environmental heterogeneity led to 

cost avoidance when present together but not on their own. This chapter also shows that, 
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counterintuitively, evolving in a heterogenous environments in large numbers can lead to cost 

avoidance even if most mutations show antagonistic pleiotropy in fitness effects across 

environments. Based on an interplay of the multiplicity of selection pressures and the supply 

of variation, our results explain why costs are rarely detected in evolutionary studies, 

particularly when the latter deal with organisms that have a history of evolution in unstable 

environments in large numbers. 

Chapter 7 concludes the thesis with a discussion of the major implications of its observations, 

while also introducing some possible future extensions of the work presented here.  
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Chapter 2 

Larger numbers can impede adaptation in 

asexual populations despite entailing greater 

genetic variation 

 

 

Highlights 

• We studied how periodic population bottlenecks influence the extent of adaptation 

(EoA) in asexual populations. 

• Experimental evolution with Escherichia coli and individual-based simulations 

revealed that the conventional measure of population size (harmonic mean (HM)) 

cannot predict fitness trajectories.  

• Simulations showed that the EoA varies positively with bottleneck size (N0) but 

negatively with number of generations (g). This explains why HM (= N0g) fails to 

predict EoA.  

• Harsher periodic bottlenecks are double-edged swords—they entail greater variation 

but reduce the efficacy of selection, ultimately impeding adaptation. 

• Our simulations and experiments show that N0/g predicts fitness trajectories much 

better than N0g and should be used as the measure of population size in evolution 

experiments that deal with average fitness increase.  

 

 

 

Published as and adapted from ‘Chavhan, Y.D., Ali, S.I., and Dey, S. (2019). Larger Numbers 

Can Impede Adaptation in Asexual Populations despite Entailing Greater Genetic Variation. 

Evol. Biol. 46, 1–13.’  
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2.1. Introduction 

Population size is a key demographic parameter that affects several ecological and evolutionary 

processes including the rate of adaptation (Desai and Fisher, 2007; Desai et al., 2007; Gerrish 

and Lenski, 1998; Lanfear et al., 2014; Samani and Bell, 2010; Wilke, 2004), efficacy of 

selection (Petit and Barbadilla, 2009), organismal complexity (LaBar and Adami, 2016), 

fitness decline (Katju et al., 2015), repeatability of evolution (Lachapelle et al., 2015; Szendro 

et al., 2013b; Vogwill et al., 2016), etc. Interestingly though, what constitutes a useful measure 

of population size for predicting evolutionary outcomes often depends on the 

ecological/evolutionary question being addressed and the population-genetics quantity in 

question (Charlesworth, 2009). Consequently, it is crucial to use the relevant measure of 

population size while constructing or empirically validating any evolutionary theory.  

Experimental evolution using asexual microbes has been one of the key tools in validating 

several tenets of evolutionary theory (Kassen, 2014, reviewed in Kawecki et al., (2012)). Most 

such studies deal with populations that face regular and periodic bottlenecks during their 

propagation (Kawecki et al., 2012).  The absolute population size keeps changing regularly 

because of these periodic bottlenecks. Therefore, in order to make predictions and claims based 

on population size in such experiments, it is important to define a proper measure of population 

size depending upon the question of interest (Charlesworth, 2009; Kawecki et al., 2012; 

Lanfear et al., 2014; Wang et al., 2016).  

Previous theoretical studies have shown that the harmonic mean of population size over time 

acts as the measure of population size that can explain and predict the fixation probabilities of 

beneficial mutations in such systems (Patwa and Wahl, 2008; Wahl and Gerrish, 2001). 

Specifically, if a population grows from size N0 to Nf via binary fissions within a growth phase, 

and is diluted back periodically to N0 by random sampling at the end of the growth phase, then 

the relevant population-size measure for fixation probabilities is given by Ne ≈ N0*log2(Nf/N0) 

= N0g, where g refers to the number of generations between successive bottlenecks and N0g is 

the harmonic mean size (Lenski et al., 1991). From an evolutionary perspective, periodic 

bottlenecks play two opposite roles in such experiments.  On the one hand, harsher bottlenecks 

(entailed by higher g) reduce the probability that a given beneficial mutation would fix due to 

sampling errors during the bottleneck. On the other hand, higher values of g also imply an 

increase in Nf, which causes an increase in mutational opportunities (binary fissions) during 

exponential growth (Wahl et al., 2002). This is expected to increase the total supply of 
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mutations that would survive drift, which in turn should increase the raw material available for 

evolution. It has been predicted that exponential growth between N0 and Nf influences fixation 

probabilities more than the elimination by sampling (Heffernan and Wahl, 2002). More 

nuanced and complex measures of population size (Campos and Wahl, 2009, 2010) also 

suggest that adaptation rates in terms of fixation probabilities would have a positive 

relationship with N0 and g, the two population size parameters amenable to experimental 

manipulation. 

Unfortunately, most experimental evolution studies with serially bottlenecked asexual 

populations do not focus on the fixation probabilities of beneficial mutants. Instead, they are 

interested in the average amount of fitness gained with respect to the ancestor at a given time 

(we call this quantity the extent of adaptation, EoA) during the course of evolution (de Visser 

and Rozen, 2005; Desai et al., 2007; Lachapelle et al., 2015; Lenski et al., 1991; Rozen et al., 

2008; Samani and Bell, 2010). Several experimental studies, dealing with quantities akin to 

EoA for periodically bottlenecked asexual populations, have used the harmonic mean (= N0g) 

for quantifying the evolutionarily relevant (i.e., predictive of the magnitude of evolutionary 

response) population size (de Visser and Rozen, 2005; Desai et al., 2007; Lachapelle et al., 

2015; Lenski et al., 1991; Rozen et al., 2008; Samani and Bell, 2010). However, to the best of 

our knowledge, there is no theoretical basis or empirical justification (Raynes et al., 2014) for 

this usage of the harmonic mean. Here we use a combination of agent-based simulations and 

long-term evolutionary experiments using Escherichia coli to investigate the interplay of N0 

and g in shaping the EoA of asexual populations. Since the harmonic mean has been widely 

used by experimentalists in the context of EoA-like quantities, we begin by testing the 

suitability of the harmonic mean as a predictor of EoA. We show that populations with similar 

values of N0g can have markedly different EoA trajectories, and this result applies to both real 

(bacterial) as well as simulated populations. Secondly, we demonstrate that although increasing 

the value of g (making the periodic bottleneck harsher) promotes adaptation through an 

increased supply of variation, it also reduces the efficacy of selection which impedes adaptation 

by restricting the spread of large-effect beneficial mutations. When these two opposing aspects 

of bottlenecks are considered together, counterintuitively, EoA turns out to have a negative 

relationship with g. Thirdly, we show that populations with similar harmonic mean (= N0g) can 

not only have different fitness trajectories but can also differ markedly in terms of how 

frequency-distribution of fitness amongst individuals changes during adaptation. Finally, we 

show that, for a given mutation rate, N0/g can be a better predictor of EoA trajectories, i.e., 
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populations with similar N0/g have similar fitness trajectories and populations with higher N0/g 

adapt faster. Our findings thus introduce a new way of thinking about the relationship between 

population size and adaptive trajectories. 

Our approach differs from previous studies in two important ways. First, unlike many studies 

(Campos and Wahl, 2009, 2010; Heffernan and Wahl, 2002; Wahl and Gerrish, 2001) we focus 

on how EoA (and not long-term fixation probabilities) is shaped by bottleneck size (N0) and 

bottleneck ratios (N0/Nf). This makes our study directly relevant to a rich body of microbial 

experimental evolution literature (de Visser and Rozen, 2005; Desai et al., 2007; Lachapelle et 

al., 2015; Lenski et al., 1991; Rozen et al., 2008; Samani and Bell, 2010),  reviewed in 

(Kawecki et al., 2012). Second, many previous theoretical studies on periodically bottlenecked 

systems (where Nf = N02
g), assume that the culture volume (and therefore Nf) is a constant, and 

then go on to explore what value of N0 or g leads to the minimum loss of variation during 

bottlenecks and/or in the long run (Campos and Wahl, 2009, 2010; Heffernan and Wahl, 2002; 

Wahl and Gerrish, 2001; Wahl and Zhu, 2015; Wahl et al., 2002). In our simulations, we 

remove this restriction and seek to compare loss of variation in those cases where both N0 and 

Nf can be different (e.g. between a population grown in 50 ml of medium versus one grown in 

(say) 1 ml of medium). Clearly, it is possible to have two populations with very different N0 

and Nf values that can nevertheless have similar values of N0g. One of the questions that we 

investigate is whether such populations have similar fitness trajectories or not. Thus, our results 

make it possible to compare the expected EoA across experimental studies that employ similar 

environments but different culture volumes, which is a rather common scenario in experimental 

evolution studies (Lachapelle et al., 2015; Raynes et al., 2012, 2014; Rozen et al., 2008; Samani 

and Bell, 2010).  
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2.2. Methods 

Experimental evolution  

Our primary aim was to investigate if a commonly used measure of population size in 

experimental evolution, namely harmonic mean (N0g), could predict EoA trajectories. We also 

wanted to see if populations with similar values of Nf have similar EoA. To this end, we 

experimentally evolved three different population regimens (LL, SL, and SS) in Nutrient Broth 

containing a sub-lethal cocktail of three antibiotics (Norfloxacin, Rifampicin and 

Streptomycin) for ~380 generations in batch culture (see Appendix 1 for more details regarding 

the culture medium). The first letter in the name refers to the harmonic mean size and the 

second letter refers to Nf; L means ‘large’ and S means ‘small’. Each regimen consisted of 8 

independently evolving replicate populations, all of which were started from a single 

Escherichia coli MG 1655 colony. The three population regimens were propagated at different 

bottleneck sizes:  LL faced lenient bottlenecks (1/10), whereas SS (1/104) and SL (1/106) 

experienced much harsher bottlenecks. LL and SL were grown at larger culture volumes (100 

ml, culture in flasks) than SS (1.5 ml, culture in 24 well-plates). Thus, in terms of Nf, LL = SL 

>> SS but in terms of N0g LL >> SL = SS (see Table 2.1 for the values of these parameters).  

 

Regime 

type 

Starter 

population 

size (N0) 

Final 

population 

size (Nf) 

Dilution 

during 

bottleneck 

No. of 

generations 

per dilution 

(g) 

Harmonic 

mean size 

(HM) 

Culture 

volume 

SS 1.5x 15000x 1: 104 ≈13.28 ~20x 1.5ml 

SL x 106x 1:106 ≈19.93 ~20x 100ml 

LL 105x 106x 1:10 ≈3.32 ~3.32*105x 100ml 

 

Table 2.1. A summary of the experimental populations. x ≈ 105 in our experiments. 

 

Fitness assays 

We reconstructed the fitness trajectories of our experimental bacterial populations by 

measuring bacterial growth using an automated multi-well plate reader (Synergy HT, BIOTEK 

® Winooski, VT, USA). We conducted these fitness assays in the same medium (containing 
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the antibiotic cocktail) that the populations experienced during evolution. We used optical 

density (OD) at 600 nm as a proxy for bacterial growth. Bacteria from the cryostocks belonging 

to each of the 24 populations were grown in 96 well plates. Each cryostock-derived population 

was assayed in three measurement-replicate wells in a 96 well plate. Each well contained 180 

μl growth medium (Nutrient Broth with the antibiotic cocktail) containing 1:104 diluted 

cryostock. The plate was incubated at 37ᴼC and shaken continuously by the plate-reader 

throughout the growth assay. OD readings taken every 20 minutes during this incubation 

resulted in sigmoidal growth curves. Fitness measurements were done using cryostocks 

belonging to multiple time-points in order to reconstruct evolutionary trajectories. While 

reconstructing fitness trajectories, it was made sure that every 96 well-plate contained 

populations belonging to similar time-points (in terms of number of generations) during the 

course of evolution. We used the carrying capacity (K) and maximum population-wide growth 

rate (R) as the measure of fitness. K of a population was defined as the maximum OD value 

attained over a period of twenty-four hours (the highest value in the sigmoidal growth curve) 

(Karve et al., 2016; Novak et al., 2006). R was estimated as the maximum slope of the growth 

curve over a running window of four OD readings (each window spanning one hour) (Karve 

et al., 2015, 2016; Vogwill et al., 2016). Fitness measurements were done using cryostocks 

belonging to multiple time-points in order to reconstruct evolutionary trajectories.  

 

Statistical analysis 

To analyze the data, we first performed separate repeated measures (RM) ANOVA for each of 

the two growth parameters (K and R). “Regimen-type” (SS, SL or LL)  was treated as the 

categorical factor, and TIME (9 time-points) as the repeated measures factor. We also included 

the interaction of the two factors (Regimen-type and TIME) in the ANOVA model. We did not 

perform post-hoc tests in the RM ANOVA analysis as it involved very large number of 

comparisons that were irrelevant for the present question and thus reduced statistical power. 

We also repeated the above RM analysis with only SL and SS (the regiment-types with the 

same harmonic mean population size). Furthermore, we analyzed the two growth parameters 

(K and R) independently at each time point in the EoA trajectory (Fig 2.2) using nested-design 

ANOVAs with Regimen-type (SS, SL or LL) as the fixed factor and replicate-line (1-8, nested 

in population-type) as the random factor. For each of these ANOVAs, we further corrected the 

p-value of the main-effect of Regimen-type using the Holm-Šidàk correction (Abdi, 2010) to 
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control the family-wise error rate. The means from all those ANOVAs which showed a 

significant (< 0.05) p-value after the Holm-Šidàk correction were further subjected to Tukey’s 

HSD to identify which pair-wise differences were significant.  

 

Simulations of microbial evolution 

Any difference between the three regimens in our experiment can, in principle, be due to some 

idiosyncratic properties of the experimental organism (E. coli) or potential differences between 

the selection environments in flasks and plates. In order to account for that possibility and 

enhance the generalizability of our results, we used an individual based model to simulate 

bacterial growth under resource-limited conditions (Wahl et al., 2002). Except for differences 

in the amount of resources, our model contained no other parameters specific to E. coli or 

related to differences in culture conditions. Thus, in terms of differences between the EoA of 

the regimens, if the model output matched the empirical observations then our results were 

likely to be applicable for other asexual systems. Treating our experiment as a case-study, we 

used our model to investigate if our results were generalizable. 

Our simulations start with a nearly clonal distribution of fitness effects. In our model, an 

individual bacterium was characterized by three principal parameters: efficiency, threshold, 

and body-mass. The simulation (coded in the C programming language) began with a fixed 

amount of resources available in the environment, utilized by the bacteria for growth. A typical 

individual was represented by an array that specified three principal parameters: (1) Bodymass, 

(2) Efficiency, and (3) Threshold. Efficiency and Threshold were the only two evolvable 

parameters. Bacteria consumed resources in an iterative and density-dependent manner. The 

parameter Bodymassi of the ith individual represented how big that individual was during a 

given iteration. Its efficiency (K_effi) specified how much food it assimilated per iteration. If 

population size/ K_effi < 1, 10(1 - (population size/ K_effi)) units were added to Bodymassi. 

Otherwise, Bodymassi remained unchanged. Bodymassi increased with cumulative 

assimilation. When Bodymassi becomes greater than or equal to thresi (its threshold parameter), 

the individual i underwent binary fission and divided into two equally sized daughter 

individuals. Each fission event had a fixed probability of giving rise to mutations based on a 

mutation rate that remained constant for all individuals in the population. K_effi and thresi 

mutate independently and were the only two parameters that could undergo mutation. The 

mutated value was drawn from a static normal distribution with the frequency of deleterious 
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mutations being much higher than that of beneficial mutations, which is in line with 

experimental observations (See Table A3.2 for the distribution parameters (Appendix 3); 

Kassen and Bataillon, 2006; Eyre-Walker and Keightley, 2007). The distribution of mutational 

effects remained fixed throughout the simulation (Kassen and Bataillon, 2006) due to which, 

EoA was expected to eventually approach a plateau. When the population ran out of resources 

(once the amount of body-mass accumulated per unit time by the population went below a pre-

decided threshold so that the sigmoidal curve reached a plateau), it was sampled according to 

the sampling ratio being studied. The above process was repeated for 400 generations, where 

each generation represented two-fold growth in population size (see Appendix 2 for the 

algorithm used in the model).  

Density-dependent growth, clonal interference, the presence of deleterious mutations, the 

presence of variable fitness effects of mutations, etc. are some key features that are instrumental 

in shaping the adaptive dynamics of periodically bottlenecked asexual populations (Patwa and 

Wahl, 2008; Sniegowski and Gerrish, 2010). Unfortunately, the complex interactions of so 

many features are difficult to capture in analytical models (Sniegowski and Gerrish, 2010). 

Consequently, previous theoretical studies have been forced to make simplifying assumptions 

like the absence of deleterious mutations (Desai and Fisher, 2007; Wahl and Gerrish, 2001), 

constancy of beneficial mutational effects (Desai and Fisher, 2007), constancy of Nf (Campos 

and Wahl, 2009, 2010; Wahl and Gerrish, 2001; Wahl and Zhu, 2015), the presence of discrete 

generations (Campos and Wahl, 2009, 2010; Desai and Fisher, 2007), etc. (see Table A2.1 

(Appendix 2) for further details). Our model avoids these simplifying assumptions, which 

might explain why some of the features captured by our model have not been reported earlier. 

Moreover, our study is in the context of EoA, while most of the earlier studies have investigated 

fixation probabilities.  
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2.3. Results 

Harmonic mean failed to predict and explain the EoA trajectories of experimental 

populations 

Repeated measures ANOVA on all three regimens indicated a significant Regimen-type × 

TIME interaction for both K (F16, 168 = 5.72; P < 10-6) and R (F16, 168 = 7.306; P < 10-6). 

However, in principle, this interaction could be driven by the fact that the LL populations had 

a much larger increase in K and R compared to the SL and SS populations. Since our primary 

interest was to check whether the SL and SS populations differed in terms of these two fitness 

measures, we performed the repeated measures ANOVA for only these two regimens and again 

found a significant Regimen-type × TIME interaction for both K (F8, 112 = 2.070; P = 0.0446) 

and R (F8, 112 = 3.594; P = 0.000948). Since the interaction term was significant, we chose not 

to interpret the main effects of Regimen-Type or TIME.  

 

Fig. 2.1. Experimental EoA trajectories in terms of carrying capacity and maximum growth 

rate. (a) EoA of carrying capacity (K). (b) EoA of maximum growth rate (R). Data points show 

mean ± SEM for 8 replicates. * refers to cases when all three pairwise differences (LL-SL, LL-

SS, and SL-SS) are significant (Tukey post hoc P < 0.05). # refers to significant difference 

across LL-SL and LL-SS, but not SL-SS (See Tables A4.1 and A4.2 (Appendix 4)). SS and SL 

have markedly different adaptive trajectories despite having similar harmonic mean population 

sizes.  

 

Individual ANOVAs showed that the EoA of SS was greater than that of SL at 5/6 and 4/5 

time-points which had significant difference in terms of K (Fig. 2.1a) and R (Fig. 2.1b). The p-

values and the F-values (with corresponding df) for each time-point for K and R are presented 

in Tables A4.1 and A4.2 respectively (see Appendix 4). Thus, particularly during the last two 

thirds of the evolution experiment, the EoA of SS was consistently higher than that of SL. The 
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effect sizes (Cohen’s d (Cohen, 1988)) of EoA differences between SL and SS were found to 

be either medium or large (with the majority being large effects; see Table 2.2) for several 

points on the EoA trajectory. Thus, similar harmonic mean can give rise to fairly different 

adaptive trajectories. This observation is consistent with recent empirical findings that question 

the validity of harmonic mean as an evolutionarily relevant population size (Raynes et al., 

2014). Surprisingly, SS had a larger overall EoA than SL despite having lower Nf. Interestingly, 

despite having similar Nf, LL typically had much larger extent of adaptation than SL, which is 

explainable by the fact that the latter regimen suffered more severe bottlenecks. This shows 

that similar Nf does not lead to similar extents of adaptation if the bottleneck ratios are different. 

In summary, the harmonic mean failed to predict the adaptive trajectories of our experimental 

populations as, in spite of having similar values of N0g, the SL and SS regimens had markedly 

different adaptive trajectories for K (Fig. 2.1a) as well as R (Fig. 2.1b).  

 

 

Fitness 

measure 

 

Generation 

 

Cohen’s d  

 

Inference about Effect Size 

 

 

 

K 

40 1.112  Large effect 

120 0.527  Medium effect 

160 0.786  Medium effect 

240 0.606 Medium effect 

280 0.514 Medium effect 

320 1.000 Large effect 

 

 

R 

40 1.172  Large effect 

120 0.770  Medium effect 

160 1.024  Large effect 

240 1.037 Large effect 

280 0.836 Large effect 

 

Table 2.2. Analysis of the differences in EoA of populations with similar HM in terms of effect 

sizes. Cohen’s d (Cohen, 1988) was used to determine the effect sizes of the differences in the 

EoA of SS and SL. 0.2 < d < 0.5 was interpreted as small effect, 0.5 < d < 0.8 as medium effect, 

and d > 0.8 as large effect. The majority of differences between SL and SS were found to be of 

large effect size. The analysis was performed only at time points when the post-hoc (Tukey) P 

– values corresponding to SL-SS were < 0.05 (see Appendix 4). 
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Our simulations matched the empirical fitness trajectories in numerically similar 

populations 

We found that the results of our experiments and simulations agree well in terms of the range 

and dynamics of adaptation over identical time-scales in numerically similar populations (Fig. 

2.2). This was true for both the measures of population-level fitness: carrying capacity (K)  

(Fig. 2.2a) and maximum growth rate (R) (Fig. 2.2b).  

We also checked if our simulations met other well-established theoretical expectations from 

the extant literature that had not been coded directly. As expected, despite following the same 

distribution for mutations, large populations showed smooth curves of fitness increase while 

adapting, whereas very small populations showed stepwise increase in fitness with long periods 

of stasis (Fig. 2.3). Theory expects this because very small populations (but not large ones) 

need to wait for beneficial mutations to arise (Sniegowski and Gerrish, 2010). Furthermore, the 

trajectories of fitness increase are expected to show curves of diminishing returns (Chou et al., 

2011; Kassen, 2014; Lenski and Travisano, 1994). Indeed, we found such trajectories 

throughout our experiments and simulations.  

 

 

Fig. 2.2. Agreement between experiments and simulations in terms of adaptive dynamics over 

identical timescales in numerically similar populations. (a) Carrying capacity (K) versus 

bottleneck number (BN) (b) Maximum growth rate (R) versus bottleneck number (BN). Data 

points represent mean ± SD over 8 replicates. Each data point corresponds to the respective 

measure of fitness (K or R) derived from the sample taken after BN bottlenecks. Range of 

population size: N0 ≈ 104.5; Nf ≈ 108.5; bottleneck ratio = 1/104. Each bottleneck corresponds to 

approximately 13.28 generations. Both carrying capacity and maximum growth rate are 

normalized with the ancestral values.  
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Fig. 2.3. Qualitative differences in adaptive trajectories corresponding to populations with a 

large different in their sizes. Stepwise increase in fitness (with long periods of stasis) occurred 

in typically small populations such as the one shown in (a) as compared to smooth curves of 

diminishing returns in typically large populations such as the one shown in (b) (See the 

ordinates for absolute ranges of Nf during adaptation). The population shown in (a) experienced 

a periodic bottleneck of 1/10 while the population shown in (b) was bottlenecked 1/104 

periodically.  

 

We also found that the standard deviation of fitness parameters in our simulations did not 

increase when the sample size was increased from 8 to 20 (Fig. 2.4). Since most of our 

simulations deal with millions of individual-based parameters they take a very long time to run. 

Therefore, we decided to operate on a sample size of 8 replicates per population type 

throughout our study. This also matched the sample size of our experimental regimens.  

 

           

Fig. 2.4. Increasing the number of replicate simulations from 8 to 20 did not result in increase 

in variation across replicates. (a) Increasing the number of independent replicate simulations 

from 8 to 20 didn’t result in qualitative changes (ranks) of three populations with similar 

harmonic mean size but different N0/g (mean ± SEM; N=20) (b) This increase in replicate 

number also didn’t result in major changes in the standard deviation in carrying capacity during 

the course of adaptation. XX’: N0 ≈ 3.6*103, bottleneck ratio: 1/10; SS’: N0 ≈ 1.8*103, 

bottleneck ratio: 1/102; SL’: N0 ≈ 9*102, bottleneck ratio: 1/104.  
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Simulations also revealed that the harmonic mean fails to predict adaptive trajectories 

We simulated evolution in populations with identical harmonic mean sizes but with different 

values of N0 and g, such that the product (N0g) remained constant. If the harmonic mean (= 

N0g) were a good predictor of how much a population is expected to adapt, then these 

treatments were expected to show similar EoA. This was not found to be the case for both K 

(Fig. 2.5a) and R (Fig. 2.5b), which was consistent with our experimental observations of EoA 

trends in SL and SS (Fig. 2.1). The simulated populations with identical harmonic mean sizes 

(XX’, SS’, and SL’) were also found to be remarkably different in terms of the adaptive 

increase in average efficiency of individuals (Fig. 2.6a). Thus, multiple measures of fitness in 

our study revealed that harmonic mean is not a good predictor of adaptive trajectories because 

populations with similar harmonic mean size can have markedly different adaptive trajectories.  

 

Fig. 2.5. Simulations: Adaption in three population types with similar harmonic mean size. 

Data points show mean EoA ± SEM for 8 replicates. (a) Adaptation in terms of normalized 

carrying capacity (K). (b) Adaptation in terms of normalized maximum growth rate (R). XX’, 

SS’ and SL’ had similar harmonic mean sizes and represent lenient, medium and harsh 

bottlenecks with N0 ≈ 3.6×103, 1.8×103
, 9×102 and bottleneck ratio of 1/10; 1/102,1/104 

respectively. These simulations suggest that populations with similar harmonic mean size can 

have markedly different EoA trajectories. 

 

In terms of fitness at the level of individuals, efficiency showed the same trend as R and K (Fig. 

2.6a). However, the adaptive trajectories corresponding to XX’, SS’, and SL’ were almost 

identical when expressed in terms of threshold (Fig. 2.6b). Threshold evolved (decreased) so 

quickly and to such a large extent in almost all population types we simulated in this study that 

most populations had similar trajectories of threshold decrease, regardless of their population 

size parameters (Fig. 2.7). Consequently, despite threshold being an important determinant of 
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fitness, adaptive differences amongst populations were best expressed and explained in terms 

of trajectories of increase in efficiency and not in terms of decrease in threshold. Therefore, we 

focussed on population-wide trait distributions only in terms of efficiency. 

 

Fig. 2.6. Adaptation in three populations with similar HM in terms of measures of fitness at the 

level of individuals (a) Adaptive increase in averge individual efficiency within populations 

with similar harmonic mean size (mean ± SEM; 8 replicates). (b) Adaptive decrease in average 

individual threshold in populations with similar harmonic mean size (mean ± SEM; 8 

replicates). Threshold evolved so quickly that its adaptive decrease did not refelct the differnce 

observed in EoA trjectories for K and R (Fig. 2.5). XX’: N0 ≈ 3.6*103, bottleneck ratio: 1/10; 

SS’: N0 ≈ 1.8*103, bottleneck ratio: 1/102; SL’: N0 ≈ 9*102, bottleneck ratio: 1/104.  

 

 
Fig. 2.7. Rapid and convergent reduction in threshold. Threshold evolved (decreased) so 

quickly and convergently in most populations that we simulated that the effects The data points 

show mean ± SEM (N=8). The populations shown in (a) were bottlenecked 1/102 periodically. 

The populations shown in (b) had N0 ≈ 900. Bottleneck ratios: BN1: 1/10; BN2: 1/102; BN3: 

1/103; BN4:1/104. 
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Interestingly, populations with similar harmonic mean were also found to differ in terms of the 

frequency distributions of the efficiency parameters amongst their constituent individuals (Fig. 

2.8). To determine why N0g could not explain EoA trajectories, we determined how EoA varied 

with N0 and g, independently.  

 

Fig. 2.8. The distributions of efficiency across constituent individuals during adaptation in 

populations with similar HM. The individuals of each simulated population (8 replicate 

populations each of XX’ and SL’) were classified into to a discrete frequency distribution of 

their efficiency values (50 static classes) just prior to the bottleneck. Higher class indices 

correspond to higher efficiencies. The best phenotype (in terms of fitness) explored by SL’ was 

consistently fitter than the best phenotype explored by XX’ (a). The modal phenotype quickly 

converged with the best available phenotype in most XX’ populations but failed to do so in all 

SL’ populations (b). The mean phenotype in XX’ approached the best phenotype very closely 

(b and c). However, there was a consistently larger gap between the best phenotype and the 

modal phenotype in SL’ (b) and an even larger one between its best and mean phenotype (b 

and c). Our simulations revealed that populations with similar harmonic mean size can differ 

appreciably from each other not only in terms of their adaptive trajectories but also in terms of 

how the distribution of fitness amongst their constituent individuals changes during adaptation. 
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EoA varied positively with N0 but negatively with g. 

If N0g were a good measure of the population size that has a positive relationship with EoA, 

then increasing either N0 or g or both should lead to greater EoA. We tested this intuitive 

prediction via simulations using several combinations of N0 and g, spanning four orders of 

magnitude for both N0 and the sampling ratio (N0/Nf). Although EoA was found to increase 

with greater N0 (Fig. 2.9a; Fig. 2.10), the relationship between EoA and g turned out to be 

negative, which was reflected in terms of both individual-level (Fig. 2.9b (in terms of 

efficiency)) and population-level (Fig. 2.11 (in terms of R)) fitness parameters. This implied 

that larger values of Nf impeded adaptation in populations when the population size during the 

bottleneck (N0) was held constant.  

Importantly, the negative dependence of EoA on g was robust to changes in mutation rate (µ) 

over a 100-fold range in our simulations (Fig. 2.13). We also found that EoA exhibited a non-

monotonous relationship with µ in both BN1 and BN4 populations, which is in line with 

theoretical expectations (Orr, 2000). Thus, the relationship between EoA and µ can be 

influenced by bottleneck ratio, which is in agreement with recent empirical findings (Raynes 

and Sniegowski, 2014; Raynes et al., 2014). 

 

 

Fig. 2.9. Simulations: The relationship of EoA (expressed in terms of efficiency) with N0 and 

g.  Data points show mean ± SEM; 8 replicates. The populations shown in (a) had the same 

bottleneck ratio (1/102) but different bottleneck sizes (= N0). EoA varies positively with N0. On 

the other hand, the populations shown in (b) had identical bottleneck size (= N0) but different 

bottleneck ratios (reflected by different values of g. Bottleneck ratios: BN1: 1/10 (g = 3.32); 

BN2: 1/102 (g = 6.64); BN3: 1/103 (g = 9.96); BN4:1/104 (g = 13.28). EoA varies negatively 

with g. Also see Fig. 2.10, 2.11 and 2.12. 

 



 

38 
 

 

Fig. 2.10. Simulations: EoA trajectories of populations with similar bottleneck ratio but 

different bottleneck sizes (N0). Data points show mean ± SEM; 8 replicates. (a) Bottleneck ratio 

= 1/10; Small bottleneck size (N0) ≈ 9000; Large bottleneck size (N0) ≈ 900000. (b) Bottleneck 

ratio = 1/103; Small bottleneck size (N0) ≈ 90; Large bottleneck size (N0) ≈ 9000. (c) Bottleneck 

ratio = 1/104; Small bottleneck size (N0) ≈ 90; Large bottleneck size (N0) ≈ 900. 
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Fig. 2.11. Simulations: EoA trajectories of populations with similar bottleneck size (N0) but 

different bottleneck ratios. Data points show mean ± SEM; 8 replicates. (a) N0 ≈ 90; Lenient 

bottleneck = 1/10 (g = 3.32); Harsh bottleneck = 1/105 (g = 16.61) (b) N0 ≈ 9000; Lenient 

bottleneck = 1/10; Harsh bottleneck = 1/103 (c) N0 ≈ 90000; Lenient bottleneck = 1/10; Harsh 

bottleneck = 1/103 (d) N0 ≈ 900000; Lenient bottleneck = 1/10; Harsh bottleneck = 1/102. 

 

 
Fig. 2.12. Simulations: EoA trajectories (in terms of R) of populations with similar bottleneck 

size (N0) but different bottleneck ratios. Data points show mean ± SEM; 8 replicates. All the 

population regimens shown here had N0 ≈ 900. Bottleneck ratios: BN1: 1/10; BN2: 1/102; 

BN4:1/104. Larger values of g lead to reduced EoA for a given number of generations. 
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Fig. 2.13. The relationship between EoA and g at three different mutation rates. (a) Adaptive 

increase in normalized carrying capacity in BN1 populations at three mutation rates. (b) 

Adaptive increase in normalized carrying capacity in BN4 populations at three mutation rates. 

(c) Normalized carrying capacity in BN1 and BN4 at generation 200 at three µ values. Both 

BN1 and BN4 had similar bottleneck size (N0 ≈ 900). BN1 experienced a periodic bottleneck 

of 1/10 whereas BN4 experienced a periodic bottleneck of 1/104.  
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A negative relationship between the extent of adaptation and g is particularly surprising 

because, in populations with similar N0, increase in g is expected to lead to an increase in the 

available variation. All else being equal, this should have led to greater adaptation. Since that 

was not the case, we went on to check if these slowly adapting populations (with similar N0 but 

higher g) were limited, qualitatively and/or quantitatively, by the availability of variation.  

 

The quantitative availability of beneficial traits could not explain why EoA varied negatively 

with g 

To determine why the extent of adaptation varied negatively with g, we probed population 

regimens that had similar starting population size (N0) after the first bottleneck but also had g 

values of 3.32 and 13.28 respectively (SM1 and SM4, where SM refers to sampling ratio, 

expressed in terms of log(10). SM1 grew to a final size of 10N0 in one growth phase (i.e., before 

bottleneck), while SM4 grew to 104N0. Consequently, SM1 faced a periodic bottleneck of 1/10 

whereas SM4 was sampled 1/104. Since SM4 experienced ~ 278 times more fission events than 

SM1 per evolutionary generation, the former was expected to stumble upon more mutations 

and consequently show many more variation. Furthermore, SM4 was also expected to arrive at  

  

Fig. 2.14. Simulations: Trajectories of efficiency in terms of across-replicate mean and within-

replicate coefficient of variation. The within-populations coefficient of variation (CV) was 

computed for each replicate population across its constituent individuals using discrete 

frequency distributions. The error bars represent SEM (8 replicates). Both SM1 and SM4 had 

similar bottleneck size (N0 ≈ 900). SM1 experienced a periodic bottleneck of 1/10 whereas SM4 

experienced a periodic bottleneck of 1/104. SM4 had a consistently lower EoA than SM1 

despite having consistently more variation. 
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very large-effect benefits that were so rare that the probability of SM1 stumbling upon them 

was vanishingly low due to its lower mutational supply. As expected, compared to SM1, SM4 

had a greater within-population coefficient of variation in terms of efficiency values (Fig. 2.14) 

and therefore was not limited by the supply of variation. To better understand the contributions 

of phenotypes of different magnitudes to the extent of adaptation, we classified the phenotypes 

into 50 discrete static classes. We found that SM4 could continually access to rare beneficial  

 

Fig. 2.15. Changes in fitness distributions during adaptation within two representative 

populations with similar N0 but different g. The distributions plotted here represent the states 

of the populations just prior to the periodic bottleneck. Refer to Fig. 2.16-2.18 for adaptive 

dynamics over eight replicates.  

 

mutations that were inaccessible to SM1 throughout the simulations (Fig. 2.15 and 2.16a). On 

the basis of these observations, the extent of adaptation can be expected to vary positively with 

g and thus SM4 was expected to be fitter than SM1 at a given point of time in general. However, 

counterintuitively, SM4 had a consistently lower extent of adaptation than SM1 (Fig. 2.14). 

Evidently, harsher periodic sampling impeded adaptation despite resulting in increased 
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substrate for selection. We also found that although higher Nf allowed SM4 to arrive at 

extremely rare mutations with very large benefits, these mutations failed to survive the harsh 

periodic bottlenecks by rising to large enough frequencies (Fig. 2.17a). In other words, SM4 

typically wasted the best mutation explored by it but SM1 almost always conserved it. This 

explains why arriving at these rare mutations with very large benefits did not make SM4 adapt 

more than SM1 in a sustained manner. However, this does not explain why the extent of 

adaptation of SM4 was consistently lower than that of SM1.  

 

The negative relationship between EoA and g can be explained in terms of the efficacy of 

selection 

The efficacy of selection in eliminating deleterious mutations and spreading beneficial ones is 

an important factor that influences the increase of the extent of adaptation. We quantified the 

inefficacy of selection in increasing EoA using the Genetic Load, which was defined as: 

Genetic Load = (Best Efficiency – Average Efficiency)/ Best Efficiency (Crow, 1958; Rice, 

2004). The term “Best Efficiency” refers to the highest efficiency value that succeeds in 

surviving the bottleneck. As discussed earlier, the magnitudes of the highest efficiency values 

explored by SM4 populations are much greater than those explored by SM1 (Fig. 2.16a). 

However, these high-fitness phenotypes of SM4 typically have such low frequencies that they 

almost always fail to survive bottlenecks and thus do not contribute significantly to the overall 

extent of adaptation (Fig. 2.17a). Therefore, we defined the genetic load only in terms of the 

phenotypes that survived the bottlenecks. We found that the Best Efficiency (after bottlenecks) 

for SM1 was very similar to that of SM4 (Fig. 2.17b). We note here that the phenotypes that 

are fitter than the wild type but less fit than the best phenotype also contribute to the genetic 

load. Thus, consistently higher genetic load entails lower contribution of the best phenotype to 

the EoA. Furthermore, if these best phenotypes (with respect to which genetic load is defined) 

are similar across populations being compared, consistently lower contribution of the best 

phenotype to EoA would in turn entail slower rise of the latter. We found that SM4 consistently 

experienced a heavier genetic load than SM1, particularly during the initial phases of evolution 

(Fig. 2.18a). This genetic load was constituted largely by phenotypes that are fitter than the 

wild type ancestor but less fit than the best phenotype (Fig. 2.19). We labelled the top five 

occupied fitness classes as the “nose” (sensu Desai and Fisher (2007)) and all the classes 

inferior to the nose as the “lagging chunk.” 
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Fig. 2.16. Simulations: Distributions of phenotypic effects across individuals during adaptation 

in populations with similar N0. The individuals of each simulated population (8 replicates each 

of SM1 and SM4) were classified into to a discrete frequency distribution of their efficiency 

values (50 static classes) prior to bottlenecks. Higher class indices correspond to higher 

efficiencies. (a) The best phenotype (in terms of efficiency) explored by SM4 was consistently 

fitter than the best phenotype explored by SM1. The modal phenotype quickly converged to 

the best available phenotype in all but one SM1 populations but failed to do so in all SM4 

populations (b). The mean phenotype in SM1 approached the best phenotype very closely (b 

and c). However, there was a consistently larger gap between the best phenotype and the modal 

phenotype in SM4 (c) and an even larger one between its best and mean phenotype (b and c). 
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Fig. 2.17. Simulations: Locations of the best class before and after bottleneck. (a) Differences 

in the locations of the best class in the distribution of the efficeincy parameter before and after 

bottlenck in populations with similar N0. The individuals of each simulated population (8 

replicate populations each of SM1 and SM4) were classified into to a discrete frequency 

distribution of their efficiency values (50 static classes). While the best class of SM1 could 

survive the bottleneck in most cases (black circles), the best class of SM4 invariably failed to 

survive its harsh bottleneck (grey triangles). (b) The locations of the best class after bottlenecks 

were remarkably similar across SM1 and SM4. The data points show mean ± SEM (8 

replicates; some error bars are smaller than the data symbols. 
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During the early phases of evolution, the relative contribution of the lagging chunk to the extent 

of adaptation was much higher in SM4 than in SM1 (Fig. 2.18b). In other words, the nose 

accounted for most of the EoA in SM1 but not in SM4 (shown schematically in Fig. 2.18c and 

2.18d). Thus, compared to SM1, the best phenotype of a typical SM4 population needed to 

outcompete many more phenotypes (present in sizable frequencies) that were superior to the 

wild-type but inferior to itself. This suggests that the efficacy of selection was higher in SM1 

than in SM4, which in turn explains the faster increase of EoA in the former. As selection 

proceeded, the genetic load of SM4 reduced greatly by generation 360 (Fig. 2.18a). This 

resulted in similar contributions of the respective noses to the overall EoA in SM1 and SM4 

(Fig. 2.18e and 2.18f).  

The above observations suggest that during the early phases of evolution, populations with 

higher g (here SM4) can face greater impediment (genetic load), which translates into a reduced 

EoA. 

 

N0/g is a better predictor of EoA than N0g 

Our simulations had suggested that the extent of adaptation has a positive relationship with N0 

and a negative relationship with g. Therefore, we went on to test if a mathematical function of 

N0 and g that varies positively with N0 but negatively with g could be a better predictor of the 

extent of adaptation (EoA). Since N0 >> g within the biologically relevant ranges of these 

quantities, functions like N0 - g would not be appropriate to predict EoA despite varying 

positively with N0 but negatively with g. Therefore, we tested if N0/g is a better predictor of 

adaptive trajectories than N0g.  

Indeed, we found that N0/g is a much better predictor of adaptive trajectories than N0g, not only 

in our simulations (Fig. 2.20 and 2.21; also see Fig. 2.5), but also in our experiments. 

Specifically, the N0/g values of LL, SS and SL populations were approximately 3.01×109, 

1.13×104, and 5.02×103, respectively. This led to a predicted EoA trend of LL>SS>SL, which 

was observed in the experiments in terms of both the fitness measures (K and R) (Fig. 2.1). 

Interestingly, if several populations with identical Nf but different N0 and g, both N0/g and N0g 

follow the same trends within the biologically relevant ranges of N0 and g. Our simulations 

validated this expectation successfully (Fig. 2.22).   
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Fig. 2.18. The efficacy of selection in SM1 was more than that in SM4. (a) SM1 consistently 

experienced a much lower genetic load than SM1 (the error bars represent SEM (8 replicates)). 

(b) The lagging chunk was the major contributor to the Extent of Adaptation (EoA) in SM4 but 

not in SM1 (the error bars represent SEM (8 replicates)). This also means that the contribution 

of the nose to the EoA (which equals (1 – contribution of the lagging chunk)) in SM1 was much 

more than that of the lagging chunk. (c) and (d) Schematic representations of the distribution 

of efficiency across individuals during adaptation during the initial phases of evolution (before 

generation 80). Due to the high efficacy of selection in SM1, the majority of individuals were 

found in the nose (c). On the other hand, a relatively low efficacy of selection due to harsher 

bottlenecks in SM4 resulted in most individuals being found in the lagging chunk (please refer 

to the text for more details) (d). (e) and (f) During the later phases of evolution (around 

generation 360), the contributions of the nose to the overall EoA became relatively similar in 

SM1 and SM4.  
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Fig. 2.19. The fraction of beneficial variation with respect to the ancestor (in terms of 

efficiency) in SM1 and SM4. The data points show mean ± SEM (8 replicates; some error bars 

are smaller than the data symbols. Beneficial variation is refers to the variation by the 

individuals that are fitter than the wild-type (ancestor). 

 

 

 

Fig. 2.20. Simulations: EoA trajectories in terms of K. Populations with similar N0/g (LBbar 

and HB) match more closely in terms of mean adaptive trajectories than populations with 

similar N0g (LB and HB). LB: N0 ≈ 3600, bottleneck ratio: 1/10; HB: N0 ≈ 900, bottleneck 

ratio: 1/104; LBbar: N0 ≈ 225, bottleneck ratio: 1/10. N0/g predicted the average fitness much 

better than N0g. 
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Fig. 2.21. N0/g was a better predictor of EoA than N0g. Adaptive trajectories in populations 

with similar N0/g expressed in terms of individual-level fitness parameters: efficiency (a), 

threshold (b). The data points show mean ± SD (8 replicates) in (a) and (b). Populations with 

similar N0/g (LBbar and HB) match more closely in terms of mean adaptive trajectories than 

populations with similar N0g (LB and HB). LBbar: N0 ≈ 225; bottleneck ratio = 1/10; MBbar: 

N0 ≈ 450; bottleneck ratio = 1/102; N0 ≈ 900; bottleneck ratio = 1/104. HB: N0 ≈ 900, bottleneck 

ratio: 1/104. 

 

 

 

Fig. 2.22. EoA in populations with similar initial Nf, but different N0g. When initial Nf is 

constant, populations with higher N0g also have higher N0/g, and thus show higher EoA. 

However, when Nf is not constant (e.g., see Fig. 2.5, 2.9b, and 2.14), higher N0g does not lead 

to higher EoA. SNFBN1: N0 ≈ 9000; bottleneck ratio = 1/10; N0g ≈ 29900; N0/g ≈ 2711. 

SNFBN2: N0 ≈ 900; bottleneck ratio = 1/102; N0g ≈ 5975; N0/g ≈ 136. SNFBN4: N0 ≈ 9; 

bottleneck ratio = 1/104; N0g ≈ 120; N0/g ≈ 0.68.  
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2.4. Discussion 

Overview of the main results and what they suggest 

Most experimental studies with periodically bottlenecked asexual populations have used the 

harmonic mean as the measure of population size (de Visser and Rozen, 2005; Desai et al., 

2007; Lachapelle et al., 2015; Lenski et al., 1991; Rozen et al., 2008; Samani and Bell, 2010; 

Vogwill et al., 2016) to investigate quantities akin to the extent of adaptation (EoA). Desai et 

al. (2007) stated that the enhancement in mean population fitness with respect to time (a 

quantity equivalent to EoA) depends upon the harmonic mean of the population size in such 

populations (Desai et al., 2007). However, there has been no empirical or theoretical test for 

the validity of the harmonic mean as a predictor of the extent of adaptation. Therefore, as a 

starting point, we performed evolutionary experiments on E. coli populations to test if the 

harmonic mean of population size (=N0g) can predict EoA. Our experiments revealed that N0g 

does not predict EoA (Fig. 2.1). This observation could be interpreted in two ways. Either there 

was something wrong with harmonic mean in terms of predicting EoA, or there were some 

idiosyncratic properties of our experimental system (e.g. different kinds of containers) that 

masks the relationship between harmonic mean and EoA. Apart from their different numbers 

(whose effect we study here) and the fact that the LL/SL treatments are grown in flasks while 

the SS treatment is grown in tissue culture plates, there are no differences between the three 

treatments, and hence the corresponding selection pressures. Since they are grown with 

continuous shaking, aeration is unlikely to be a significant issue. To account for the possibility 

that some idiosyncrasies of our experiments were responsible for our results, and to test if the 

results of our experimental case-study were generalizable, we simulated the adaptive evolution 

of asexual populations that grow via fission. For this purpose, we used a very generic model 

that did not contain any E. coli specific functions or parameters. The idea here was that if the 

outcomes of the simulations matched the experiments, we could be reasonably confident that 

the experimental results are not due to some peculiarities of the E. coli system or experimental 

protocols. The simulations also revealed no association between N0g and EoA (Fig. 2.5) which 

strengthened the first interpretation that N0g is not a good predictor of EoA.  

It must be added here that conventionally, the harmonic mean has been treated as an 

evolutionarily relevant measure of population size only in terms of neutral mutations 

(Charlesworth, 2009; Kimura, 1983). However, at least in terms of fixation probabilities of 

beneficial mutations, it has been shown that population size measures similar to the harmonic 
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mean can act as the relevant measure of population size (Campos and Wahl, 2009, 2010; 

Heffernan and Wahl, 2002). 

To investigate why N0g is an inappropriate measure for predicting EoA, we used our model to 

test how EoA varied with N0 and g independently and found the counter-intuitive result that 

EoA varies negatively with g (Fig. 2.9b, 2.11 and 2.12). To explain this result, we probed the 

composition of our simulated populations as they evolved (Fig. 2.14 – 2.18). We found that g 

plays a dual role in terms of determining EoA. Higher values of g positively affect EoA by 

increasing the supply of variation, but negatively affect EoA by decreasing the efficacy of 

selection, as reflected by a consistently greater genetic load. We found that this second effect 

of g on EoA overshadows the first, something that is underappreciated in the empirical 

literature. Since N0 and g have positive and negative relationships respectively with EoA, 

intuition suggests that a good predictor of EoA should also do the same. One such expression 

(of the many possible, taking into account that in most evolutionary experiments N0 >> g) is 

N0/g. N0/g indeed turns out to be a better predictor of EoA in our simulations than N0g (Fig. 

2.20 and 2.21). We show below how both measures, (i.e. N0g and N0/g) could lead to similar 

predictions about EoA under certain circumstances, and why is it important to consider the 

cases when this correspondence breaks down. 

The rest of the discussion elaborates the various insights mentioned above (and some more) 

and their consequences. 

 

Periodic bottlenecks lead to increased variation but reduced adaptation 

The growth of many natural asexual populations is punctuated by episodic bottlenecks caused 

by, for example, abrupt dissociation from hosts or spread of infections across hosts (reviewed 

in (Abel et al., 2015)), etc. Moreover, periodic sampling during sub-culturing is a common 

feature of most asexual populations propagated during experimental evolution studies 

(Kawecki et al., 2012; Lenski et al., 1991). Therefore, it is important to appreciate the complex 

role played by periodic bottlenecks in the evolutionary dynamics of asexual populations.  

Most experimental evolution studies with asexual microbes are started with either genetically 

uniform/clonal replicate populations or a mixed inoculum of relatively small number of 

genotypes. In such populations, de novo beneficial mutations are the principal basis of 

adaptation (Barrick et al., 2009; Kawecki et al., 2012). That is why populations that experience 
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greater number of binary fissions per generation are expected to generate more de novo 

beneficial variation and thus, to have a higher extent of adaptation. Now, the number of binary 

fissions per generation is given by N0(2
g-1)/g. This quantity varies positively with the number 

of generations before a bottleneck (g) and also with the size of the population at the bottleneck 

(N0). Thus, all else being equal, the harmonic mean (N0g) can be expected to be a good predictor 

of the extent of adaptation.  

However, the above line of reasoning disregards the fact that there can be a significant loss of 

variation during periodic bottlenecks. As g increases, N0 represents a smaller fraction of the 

final population size (Nf) before bottleneck, which in turn increases the chances of loss of 

variation. For example, assume that there are two bacterial populations that have the same value 

of N0 (=102) but g values of 3.32 and 13.28, leading to Nf values of 103 and 106 respectively 

(Lenski et al., 1991). For a given value of N0, increasing the value of g decreases the probability 

that a new beneficial mutation would survive the bottlenecks (Wahl and Zhu, 2015; Wahl et 

al., 2002). All else being equal, this should reduce the extent of adaptation.  

Thus, increasing g has opposite effects on supply and survival of mutations in a population. 

Several theoretical studies have investigated which of these two effects is more important for 

adaptive evolution in asexual populations. For example, it has been suggested that increasing 

g increases the probability of fixation of a beneficial mutation (Heffernan and Wahl, 2002). 

This implies that the positive relationship between g and mutational supply can overcome the 

negative effect of increasing g on adaptation. Other theoretical studies have also shown a 

positive relationship between adaptively relevant population size and the product N0g (Campos 

and Wahl, 2009, 2010). Unfortunately, this rich body of theoretical predictions are not in the 

context of quantities (like EoA) that are experimentally tractable, which was one of the 

motivations behind this study.  

Our experiments (Fig. 2.1) and simulations (Fig. 2.5) showed that populations with similar 

values of N0g can have very different adaptive trajectories, suggesting that N0g is not a good 

predictor of EoA. Moreover, our simulations predicted the relationship between EoA and g to 

be negative (Fig. 2.9b, 2.11 and 2.12) and not positive. These two results disagree with a rather 

large body of existing literature, as outlined above. One way by which this can happen is if our 

model incorporates some atypical assumptions which lead to the observed counter-intuitive 

results. However, if that were to be the case, then one would also expect our model to show 

other unintuitive results. Therefore, we first investigated whether various other predictions of 
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our model matched those from the literature. Our model was able to replicate several intuitive 

theoretical predictions that had not been coded directly. Firstly, as expected (Elena et al., 1996; 

Sniegowski and Gerrish, 2010), very small populations showed discontinuous staircase-like 

(stepwise) trajectories of fitness increase whereas large populations showed smooth adaptive 

trajectories (Fig. 2.3). Secondly, EoA trajectories showed diminishing returns with time despite 

never hitting the explicitly coded wall of adaptive limit (Fig. 2.4 - 2.6, 2.9 - 2.14, 2.20, and 

2.22) (Lenski et al., 1991; Tenaillon et al., 2016). Thirdly, as expected, we found a non-

monotonous relationship between EoA and mutation rate (Fig. 2.13c) (Orr, 2000). Fourthly, 

EoA showed a positive but saturating relationship with N0 (which is an unambiguous measure 

of absolute population size) (Fig. 2.9a) (Gerrish and Lenski, 1998; Sniegowski and Gerrish, 

2010).  All this was highly unlikely if our model incorporated unrealistic or atypical 

assumptions. Furthermore, for numerically similar populations (i.e. populations with similar 

N0 and g) and identical time frames, the results from our simulations were a very close match 

to the results of our experiments in terms of both K and R trajectories (Fig. 2.2). This again 

suggests that the model captures at least some features of the EoA of our E. coli populations. 

Finally, the EoA rank predictions generated for the three experimental populations based on 

our model agreed well with the empirical data (LL>SS>SL, Fig. 2.1). Therefore, it is reasonable 

to state that our model was generic and a good descriptor of evolving bacterial populations. 

 

EoA varies negatively with g because higher g makes selection less effective  

In order to explain why EoA varies negatively with g, we simulated populations with similar 

values of N0 (i.e., bottleneck size) but different degrees of harshness of the bottlenecks, namely 

SM1 (lenient bottleneck (= 1/10), g =3.32) and SM4 (harsh bottleneck (= 1/104), g = 13.28) 

(Fig. 2.14 and 2.18).  

Our results demonstrate that higher g decreases the efficacy of selection in terms of spreading 

beneficial mutations and purging deleterious ones (Fig. 2.18, also see Fig. 2.16 and 2.17). As 

shown in Fig. 2.18, very high-efficiency classes rise to very high frequencies in SM1 

populations by generation 80. However, such classes fail to do so in SM4 populations. Owing 

to lenient bottlenecks (lower g), selection operates so effectively in SM1 that its best efficiency 

class quickly converges with the modal class (Fig. 2.16b). This is also reflected by the 

proximity of the mean class with the modal class in SM1 (Fig. 2.16c). Thus, once a high-fitness 

class arises in an SM1 population, its rapid spread results in a steep increase in the population’s 
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EoA. However, despite having the same bottleneck size (= N0) as SM1, SM4 populations 

exhibit a much slower rise in their EoA. This happens due to two reasons. As opposed to SM1, 

high-fitness genotypes in SM4 need to rise to much higher frequencies to survive the harsh 

periodic bottlenecks. This results in the removal (due to sampling) of several high-fitness 

classes from SM4 during the bottleneck (Fig. 2.17a). More importantly, the higher mutational 

supply rate of SM4 increases the genetic load (Fig. 2.18), which ultimately results in a much 

slower rise in the extent of adaptation of SM4. 

 

Evolution of carrying capacity can feedback into adaptive trajectories 

Both our experiments and simulations showed that carrying capacity (K) can evolve during 

adaptation in asexual microbes (Fig. 2.1a and 2.5a respectively), which is consistent with 

previous results (Novak et al., 2006). Unfortunately, most models of asexual adaptation do not 

take into account such adaptive changes in the carrying capacity (Campos and Wahl, 2009, 

2010; Gerrish and Lenski, 1998; Wahl and Gerrish, 2001). Most evolution experiments keep 

the bottleneck ratio (represented by g) constant (Kawecki et al., 2012; Lenski et al., 1991). This 

constancy of g ensures that any evolutionary change in carrying capacity would also change 

N0. In other words, if K increases, a constant value of g throughout evolution would ensure an 

increase in N0. Since higher values of N0 accelerate adaptation (Fig. 2.9a), the regularity of 

bottlenecks introduces a positive feedback during evolution if K increases adaptively. Stated 

differently, a larger value of N0 would make a population evolve higher K, which in turn would 

increase the next N0, and so on. We think that this aspect of fitness should not be omitted from 

theoretical models of how microbes evolve, particularly under resource-limited conditions, 

which are a common feature of experimental evolution protocols (Kawecki et al., 2012; Lenski 

et al., 1991). 

 

N0/g is a better predictor of the extent of adaptation than N0g 

As shown in Fig. 2.9b, 2.14 and 2.11, when selection is at work, the extent of adaptation 

decreases with increasing g. This suggests that a population size measure which is an increasing 

function of N0 but a decreasing function of g can be a better predictor of EoA than the 

conventional measure (N0g). For example, as shown in Fig. 2.20, we found that N0/g is a better 

predictor of EoA than the harmonic mean size (= N0g). Admittedly, it is not possible to reason 
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from this that the expression N0/g will always be a good predictor of EoA, and we make no 

such claims. We simply submit this expression as a potential candidate for this purpose and 

hope that future theoretical work will be able to validate this empirically derived quantity.  

 

Implications  

The adaptive dynamics of asexual populations depend on a delicate interplay of the rate at 

which variation is introduced in the population and the amount of variation lost periodically 

during bottlenecks. (Luria and Delbrück, 1943) showed that in periodically bottlenecked 

systems, each generation contributes equally to the total number of mutants, which, in turn, is 

proportional to N0(2
g)µ. Furthermore, ignoring the competition between distinct mutations, the 

per-generation rate of production of the mutants that would eventually survive the bottleneck 

is proportional to (1/2g)N0(2
g)µ (= N0µ). Thus, the only population size parameter that would 

determine the supply rate of mutations in the absence of mutational competition is N0. 

However, ignoring mutational competition inevitably overestimates the supply of variation in 

the population. Moreover, we have shown that populations with the same N0 can have starkly 

different adaptive trajectories if they have different values of g, with the extent of adaptation 

varying negatively with g (Fig. 2.14 and 2.18). If N0 is an overestimation of the mutational 

supply, N0g (the harmonic mean size) is an even bigger overestimate. Our finding that N0/g 

successfully predicts the adaptive trajectories of bottlenecked populations can thus potentially 

correct for such overestimations in the supply rate of mutations. However, it is possible to think 

of other theoretical expressions that can also capture the observed relationships between N0 and 

EoA (positive) or N0 and g (negative). A detailed theoretical investigation of what is the correct 

expression that incorporates these relationships will be the logical next step but is outside the 

scope of the current study. 

Most theoretical studies assume that the final population size attained in their study systems 

(Nf) is constant (Campos and Wahl, 2009, 2010; Gerrish and Lenski, 1998; Heffernan and 

Wahl, 2002; Wahl and Gerrish, 2001; Wahl et al., 2002). Interestingly, if the experimental 

populations that are being compared have similar values of Nf (Desai et al., 2007; Raynes et 

al., 2014; Vogwill et al., 2016), then the populations with larger values of N0g will typically 

also have larger values of any quantity that is an increasing function of N0 but a decreasing 

function of g. This is because of two reasons. First, if Nf is held constant, since Nf = N02
g, 

increasing N0 necessarily decreases g. Second, in most empirical studies, N0>>g. 
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Consequently, if Nf is assumed to be the same across the populations being compared, any 

prediction based on the relative values of N0g will typically be similar to predictions based on 

N0/g (Fig. 2.22). However, whenever Nf is not held constant (e.g., Fig. 2.5, 2.9, 2.14, 2.20 and 

2.21, and studies like (Lachapelle et al., 2015; Ramsayer et al., 2013; Raynes et al., 2014; 

Rozen et al., 2002; Samani and Bell, 2010),  N0/g predicts EoA much better than N0g. The 

above observations can explain why N0g has been widely used across several empirical studies 

despite failing to capture the effects of g on EoA accurately.  

At very long time-scales, the high-fitness mutations accessible only to SM4 (but not to SM1) 

may end up surviving a harsh periodic bottleneck. A post-facto analysis of our SM4 simulations 

shows that mutations of this kind rise to a frequency between 10-7 and 10-8 in a typical growth 

phase just prior to bottlenecks in SM4. Since N0 is close to 103 in these populations, the above 

high-quality mutations would survive one bottleneck in every 104 to 105 growth phases which 

roughly amounts to 1.3×105 to 1.3×106 generations. However, to this date, there are no reported 

experimental evolution studies over this long a time-span. Therefore, we conclude that the 

observation that increasing g decreases EoA should be relevant for the time-scales most 

commonly employed in experimental evolution studies.  

Our results can be used to compare the extents of adaptation in independent evolution 

experiments with similar environments but dissimilar demographic properties (differences in 

terms of N0 and/or g and/or Nf). Such studies, which compare populations evolving in similar 

environments but with dissimilar demographic properties, are reasonably common in the field 

of experimental evolution (Desai et al., 2007; Lachapelle et al., 2015; Raynes et al., 2014, 2014; 

Rozen et al., 2002; Samani and Bell, 2010; Vogwill et al., 2016). 

Our study shows that in serially bottlenecked asexual populations, the destructive aspect of 

bottlenecks (reduction in efficacy of selection by harsher bottlenecks) can overshadow their 

constructive aspect (increase in supply of variation in harsher bottlenecks). This calls for a 

change in perspective about periodic bottlenecks and a substantial re-evaluation of the role of 

population size as a predictor of adaptive evolution.  

 

 

 

 



 

57 
 

Chapter 3 

Adapting in larger numbers can increase the 

vulnerability of Escherichia coli populations to 

environmental changes 

 

Highlights 

• We studied the effects of historic population size on the vulnerability of asexual 

populations to sudden environmental changes. 

• We subjected replicate Escherichia coli populations of different sizes to experimental 

evolution in an environment containing a cocktail of three antibiotics. In this 

environment, the ability to actively efflux molecules outside the cell is expected to be 

a major fitness-affecting trait. 

• We found that all the populations eventually reached similar fitness in the antibiotic 

cocktail despite adapting at different speeds, with the larger populations adapting faster. 

Surprisingly, whereas efflux activity enhanced in the smaller populations, it decayed in 

the larger ones. 

• The evolution of efflux activity was largely shaped by pleiotropic responses to selection 

and not by drift. 

• The larger populations also showed inferior fitness upon sudden exposure to several 

alternative stressful environments. 

• Our study provides a novel link between population size and the vulnerability to 

environmental changes. 

 

 

Adapted from and published as ‘Chavhan, Y., Karve, S., and Dey, S. (2019). Adapting in 

larger numbers can increase the vulnerability of Escherichia coli populations to environmental 

changes. Evolution 73, 836–846.’ 
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3.1. Introduction 

Population size is a key ecological parameter that influences the rate at which asexual 

populations evolve (Desai and Fisher, 2007; Desai et al., 2007; Gerrish and Lenski, 1998; 

Wilke, 2004). All else being equal, larger populations are supposed to evolve faster as they are 

expected to have access to greater variation (Desai and Fisher, 2007; Desai et al., 2007; Orr, 

2000; Sniegowski and Gerrish, 2010; Wilke, 2004). Moreover, the efficiency of natural 

selection, in favoring beneficial mutations and keeping out deleterious ones, increases with 

increasing population size (Chavhan et al., 2019a; Petit and Barbadilla, 2009), which is also 

expected to increase the rate of adaptation. However, little is known about how evolving large 

asexual populations fare when their environment changes abruptly. Are their performances 

comparable with smaller populations that have evolved in the same environment? 

Consider a clonally derived large asexual population that has evolved in a constant environment 

for an extended period. The ability of such a population to face sudden environmental changes 

would be determined by the variation accumulated during evolution in the constant 

environment. However, the population size experienced during evolution will influence 

variation in two contrasting ways. On the one hand, larger asexual populations are expected to 

stumble upon more mutations during adaptation (Desai and Fisher, 2007; Desai et al., 2007; 

Sniegowski and Gerrish, 2010). On the other hand, since natural selection is more efficient in 

larger populations, it can lead to a rapid increase in the average fitness and severe reduction in 

the genetic variation of such populations (Chavhan et al., 2019a; Desai and Fisher, 2007; 

Sniegowski and Gerrish, 2010). Such reduction in variation can potentially be detrimental if 

the environment changes suddenly, particularly if high fitness in the old environment is 

correlated with low fitness in the new one (antagonistic pleiotropy sensu (Cooper, 2014; 

Cooper and Lenski, 2000). Thus, the actual amount of variation available to the population 

would be determined by an interaction between these two opposing aspects.  

Asexual populations of very different sizes also have markedly different accessibilities to 

beneficial mutations in identical environments (Chavhan et al., 2019a; Desai and Fisher, 2007; 

Sniegowski and Gerrish, 2010; Wilke, 2004). This is because beneficial mutations that confer 

higher fitness gains are generally rarer (Eyre-Walker and Keightley, 2007; Kassen and 

Bataillon, 2006; Neher, 2013; Perfeito et al., 2007; Sniegowski and Gerrish, 2010)). 

Consequently, whereas adaptation in very large populations is driven predominantly by rare 

large-effect beneficial mutations, small populations typically adapt via relatively common 
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small-effect beneficial mutations (Sniegowski and Gerrish, 2010). The ability of  a small 

population to face environmental changes is also expected to be different from that of a larger 

one. This notion stems primarily from theoretical studies which predict that the pleiotropic 

effects of large- and small-effect beneficial mutations should be very different (Lande, 1983; 

Orr and Coyne, 1992). For example, Lande’s model for studying the response to selection on 

beneficial mutations of varying sizes assumed that major beneficial mutations have substantial 

pleiotropic costs while minor beneficial mutations have none (Lande, 1983). It has been 

suggested that a better assumption would be that the deleterious pleiotropic effects of a 

beneficial mutation are proportional to the size of the benefit it confers (Orr and Coyne, 1992). 

Furthermore, recent empirical investigations have found that deleterious mutations that confer 

larger fitness deficits also tend to have more pleiotropic effects (Cooper et al., 2007). Overall, 

the extant literature suggests larger beneficial mutations may have greater deleterious 

pleiotropic effects. Given that large populations adapt primarily via rare large-effect mutations 

and small populations via relatively common mutations of small effect (Sniegowski and 

Gerrish, 2010), it is expected that larger populations would suffer heavier pleiotropic 

disadvantages. Thus, if asexual populations of different sizes adapt to the same constant 

environment for an extended period, larger populations can become inferior to smaller ones in 

terms of their immediate response to environmental changes. 

In this study, we used experimental evolution to examine the above notion. Specifically, we 

propagated replicate Escherichia coli populations of different sizes in a constant environment 

for ~ 380 generations. This constant environment contained an unchanging sub-lethal cocktail 

of three antibiotics, namely, norfloxacin, rifampicin, and streptomycin. When all the 

populations reached similar fitness in this environment, we estimated their ability to face 

sudden changes in environmental conditions using two different approaches. First, we studied 

the evolution of energy-dependent efflux activity (EA), which represents the generic capacity 

of bacteria to actively transport unwanted molecules out of their cells and is a critical 

component of xenobiotic metabolism (Sun et al., 2014). EA is known to be one of the broad-

based mechanisms in bacteria for fighting multiple stresses including antibiotics (Kumar and 

Schweizer, 2005), heavy metals (Nies, 2003; Poole, 2005), bile salts (Thanassi et al., 1997), 

organic solvents (Fernandes et al., 2003), intercalating mutagens (Ma et al., 1993; Nishino et 

al., 2009), etc. This makes EA a good candidate character to study the ability of bacterial 

populations to thrive in the face of sudden environmental stress (Karve et al., 2015). Second, 

we directly tested the fitness of our populations in several alternative environments which are 
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known to affect E. coli very differently as compared to the three antibiotics in the selection 

environment.  

The three antibiotics used in our selection environment had very different mechanisms and 

sites of action (Campbell et al., 2001; Drlica and Zhao, 1997; Sharma et al., 2007). Evolution 

in this environment is expected to favour the presence of EA. However, we found that whereas 

larger populations undergoing fast adaptation experienced decay of EA, smaller populations 

undergoing slow adaptation experienced enhanced EA. These results were attributable to 

correlated responses to selection rather than the accumulation of contextually neutral mutations 

via genetic drift. The larger population also had lower fitness upon exposure to four different 

alternative environments. This demonstrates that highly efficient selection during rapid 

adaptation in large populations can render them vulnerable in terms of their response to 

environmental changes.  

Adaptation to a given environment is expected to result either in enhancement/maintenance or 

in decay of a biological character (but not both). To the best of our knowledge, this is the first 

study to show that even in the absence of major effects of drift, a biological character under 

selection can decay or enhance depending on the size of the adapting populations.  
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3.2. Materials and methods 

Experimental evolution and measurement of adaptive dynamics 

The maintenance protocol of these selection lines has been previously described in another 

study (Chavhan et al., 2019a). We derived 24 microbial populations from a single Escherichia 

coli MG 1655 colony and randomly distributed them among three population size treatments, 

namely LL, SL, and SS (refer to the next paragraph for the details of this nomenclature), leading 

to 8 independently evolving replicate populations per treatment. The populations evolved in a 

constant environment made of nutrient broth containing a sub-lethal cocktail of three 

antibiotics (henceforth called ‘selection environment’) under batch culture for ~380 

generations (see Supplementary Methods for the detailed composition of the nutrient broth). 

The three antibiotics used were norfloxacin (0.015 μg/ml), rifampicin (6 μg/ml) and 

streptomycin (0.1 μg/ml). These antibiotics target different cellular mechanisms: norfloxacin 

interferes with DNA replication (Drlica and Zhao, 1997), rifampicin affects RNA transcription 

(Campbell et al., 2001), while streptomycin affects protein translation (Sharma et al., 2007).  

We propagated the three population types at different population sizes. The size of a typical 

periodically bottlenecked asexual population depends on three interdependent parameters: N0 

(the number of individuals in the bottleneck), Nf (the number of individuals before the 

bottleneck), and g (the number of generations between successive bottlenecks). Since these 

populations grow via binary fissions, Nf = N0 × 2g (Lenski et al., 1991). The conventional 

measure of size in bottlenecked populations is the harmonic mean of population size (HM = 

N0 × g) (but also see (Chavhan et al., 2019a) for a measure of population size relevant for 

predicting the extent of adaptation in such systems). Thus, bottleneck properties are 

instrumental in shaping the size of such populations. Our experiment had three different 

population size treatments, called LL, SL, and SS. The first letter of a population type’s name 

represents a relative measure of the harmonic mean size (L ≈ 3.3 x 1010; S ≈ 2.0 x 106) and the 

second letter represents a relative measure the culture volume (L refers to 100 ml and S refers 

to 1.5 ml). The density of individuals (number of individuals per unit volume) was identical 

across the three population types at the beginning of the experiment. Moreover, whereas LL 

faced lenient bottlenecks (1/10; g = 3.3), the bottleneck ratios were much harsher in SS (1/104; 

g = 13.3) and SL (1/106); g = 19.9). This ensured that LL >> SL = SS in terms of HM.  

We computed the speed of adaptation (SoA) of the three population types using the fitness 

trajectories over ~380 generations reported in an earlier study (Chavhan et al., 2019a). The 
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fitness trajectories of all three population types had displayed diminishing returns, which is a 

common observation in evolution experiments with microbes (Cooper and Lenski, 2000; 

Couce and Tenaillon, 2015; Schoustra et al., 2009). Therefore, we quantified SoA as the 

maximum slope of fitness trajectories observed during the evolution experiment. SoA was 

quantified in terms of two measure of fitness, namely, carrying capacity (K, the maximum 

optical density reached in a growth assay) and maximum growth rate (R, the maximum slope 

of the growth curve during the assay).  

The experimental design of our study is shown schematically in Fig. 3.1. 

 

 

Fig. 3.1. A schematic representation of our study. Note that the assays reported here had been 

carried out when the three population-types (LL, SL, and SS) did not have significantly 

different fitness in the presence of the antibiotic cocktail, i.e. they were at similar levels of 

adaptedness. 

 

Measurement of efflux activity (EA)  

We measured the generic EA of the three population types at the beginning and the end of the 

above evolution experiment using a previously established protocol (Karve et al., 2015; 

Webber and Coldham, 2010). Specifically, we measured the efficiency with which bacteria 

could transport a small, foreign molecule out of their cells (see Appendix 5).  

We used one-sample t-tests to determine if the population types had evolved significantly 

different EA than the ancestor. We also used a one-way ANOVA with population type (LL, 
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SL, or SS) as the categorical predictor and efflux activity (EA) as the dependent variable to 

determine the statistical significance of EA differences between the three types. We made sure 

that the EA assays were carried out when the fitness of the three types were statistically 

indistinguishable in their selection environment (Fig. 3.1). Furthermore, all the three 

population types were derived from a common ancestor. Therefore, the results of these assays 

can only be attributed to differences in their population sizes. We further used Cohen’s d for 

comparing the significance of differences in the EA of the three population types in terms of 

effect sizes (Cohen, 1988). We also tested if the variation across replicates was significantly 

different for the three population types. To this end, we compared the variances of LL, SL, and 

SS lines in a pairwise manner using the Fligner-Killeen test for homogeneity of variances 

(Donnelly and Kramer, 1999; Fligner and Killeen, 1976). 

 

Fitness assays in alternative environments  

We quantified the fitness of the three population types in four distinct alternative environments 

at the end of our evolution experiment (the same time-point at which EA was measured). The 

design of our study demanded that each alternative environment must impose a challenge that 

is known to be different from the one imposed by the antibiotic cocktail. Otherwise, the fitness 

of a population in an alternative environment could be trivially predicted from its fitness in one 

of the antibiotics in the selection environments. We used Ampicillin as an alternative stress 

because it has a different site and mechanism than all the three antibiotics used in the cocktail 

(ampicillin is a β-lactam antibiotic which inhibits cell-wall synthesis) (Waxman and 

Strominger, 1983). Similarly, we used high concentrations of copper (heavy metal stress) as 

another alternative environment. At high concentrations, the incompletely filled d-orbitals of 

Cu2+ ions form unspecific complex compounds which are toxic to the cellular physiology 

(Nies, 1999). Further, we also used two nutritionally challenging minimal media based on 

sorbitol and urea as the only carbon sources, respectively.  

We revived the endpoint cryostocks from our selection-experiment and grew them in nutrient 

broth (without antibiotics) for 12 hours, which represents ~ 6.6 doublings. Thus, any lingering 

physiological effects of stress due to antibiotics were ameliorated. Since all the population 

types had evolved in the same environment, the effects of the historic environment were not an 

issue in our study. We carried out automated growth-assays on these populations in the 

alternative environments using 96-well tissue culture plates in a well-plate reader (Synergy HT, 
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BIOTEK ® Winooski, VT, USA). We used OD at 600 nm as the measure of bacterial density, 

and assayed growth from each cryostock-derived population in three measurement-replicates. 

The 96-well-plate was incubated at 37ᴼC and shaken continuously at 150 rpm. The culture 

volume in each well was 180 μl. The reader took OD readings every 20 minutes, which gave 

rise to high resolution sigmoidal growth-curves. We used two measures of fitness: (1) Carrying 

capacity (K, the maximum OD achieved during the growth curve) and (2) Growth rate (R, the 

highest slope of growth curve measured over a dynamic window of ten OD readings).  

The fitness trends in alternative environments were analyzed in two ways. First, we performed 

a pooled analysis using a mixed-model ANOVA with population type (three levels: LL, SL, 

and SS) and alternative environment (four levels: presence of ampicillin, urea as the sole carbon 

source, sorbitol as the only carbon source, and presence of high [Cu2+]) as fixed factors crossed 

with each other, and replicate number (1-8) as a random factor nested in population type.  

Since differences in performance within any one of the four alternative environments could 

have driven the results of the pooled analysis on their own, we also performed a separate 

analysis for each alternative environment. Each of these tests involved a nested-design 

ANOVA with population type (LL, SL, and SS) as the fixed factor, and replicate number (1-8) 

as a random factor nested in population type. We controlled for false discovery rates (FDR) in 

these individual ANOVAs using the Benjamini-Hochberg procedure (Benjamini and 

Hochberg, 1995). We used a stringent set of four conditions to determine the significance of 

the tests done for each environment individually: (1) The ANOVA done over the triplet of LL, 

SL, and SS should have P smaller than the corresponding Benjamini-Hochberg critical value. 

(2) The difference within the population type triplet has large effect size (partial η2 > 0.14) 

(Cohen, 1988). (3) Tukey’s HSD should reveal significant pairwise differences (P < 0.05). (4) 

The pairwise differences should have medium or large effect sizes (Cohen’s d). We counted 

the results of a test as significant only when all four of these conditions were met 

simultaneously.  
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3.3. Results  

LL populations had greater speed of adaptation (SoA) 

There was a significant effect of population size on SoA, both in terms of K (Fig. 3.2a; P = 

1.505×10-8; F(2,21) = 47.870) and R (Fig. 3.2b; P = 2.73×10-6; F(2,21)  = 25.070) (one-way 

ANOVA, N = 8). Tukey’s HSD (pair-wise post-hoc) suggested the following relationships for 

K: LL > SL (P = 1.501×10-4), LL > SS (P = 1.403×10-4), SL > SS (P = 0.004), and R:  LL > 

SL (P = 1.55×10-4), LL > SS (P = 1.45×10-4) and SL ~ SS: (P = 0.907). Taken together, this 

suggests that LL populations adapted faster than both SL and SS. 

 

Fig. 3.2. Speed of adaptation during evolution to the antibiotic cocktail. The solid lines in the 

box plots mark the 25th, 50th, and 75th percentiles; the dashed lines within the box plots represent 

means (N = 8). (a) Speed of adaptation in terms of K. (b) Speed of adaptation in terms of R. 

The grey data points marked with an arrow represent the only non-LL population that lost the 

ancestral efflux activity (see the text for details). Note that it was the same replicate population 

which was an outlier in terms of both K and R in the SL treatment. 

 

LL populations evolved reduced efflux activity (EA) 

We found that whereas LL lost the efflux activity (EA) with respect to the common ancestor, 

SL and SS gained it (Fig. 3.3a) (one sample t-test against the ancestral efflux activity: P = 

0.003086, Cohen’s d = 1.26 (large effect) (LL); P = 0.029800, Cohen’s d = 1.25 (large effect) 

(SL); P = 0.000823, Cohen’s d = 2.28 (large effect) (SS). One-way ANOVA (N=8) across the 

three population types revealed a significant main effect of population type (P = 2.055×10-6; 

F(2,21) = 26.044) and Tukey’s HSD for the pairwise comparisons showed LL < SL (P = 

2.710×10-4), LL < SS (P = 1.411x10-4) and SL ~ SS (P = 0.155). Furthermore, the statistically 

significant pairwise differences (LL-SL and LL-SS) also had very large effect sizes: Cohen’s 
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d = 2.512 for LL-SL; Cohen’s d = 3.53 for LL-SS). We also found that the variation across 

replicates was not significantly different across the three population types (pairwise analysis 

using the Fligner-Killeen test: P = 0.576 (LL-SL); P = 0.644 (LL-SS); P = 0.762 (SL-SS). 

Taken together, it is clear that EA, a major fitness-affecting trait in the presence of multiple 

antibiotics, had diminished in LL but enhanced in SL and SS. 

 

Fig. 3.3. Evolved efflux activity and its correlation with the speed of adaptation. (a) EA in the 

three population-types after evolution in the presence of the antibiotic cocktail. The solid lines 

in the box plots mark the 25th, 50th, and 75th percentiles; the dashed lines within the box plots 

represent means (N = 8). The black dotted line represents the ancestral efflux activity. Each 

data point represents the average of two independent efflux measurements. The grey data point 

marked with an arrow in each of the three panels represents the only non-LL population that 

lost the ancestral efflux activity (see the text for details) and is the same replicate that was an 

outlier in Fig 3.2. EA had a strong negative correlation with SoA, expressed in terms of (b) 

carrying capacity (K) and (c) maximum growth rate respectively.  
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EA was negatively correlated with SoA 

A corollary of the above observations was a strong negative correlation between EA and SoA, 

both in terms of K (Fig. 3.3b; Spearman’s ρ = -0.807; P = 1.898×10-6) and R (Fig. 3.3c; 

Spearman’s ρ = -0.703; P = 1.256×10-4). Since the three population types differ in terms of 

their population sizes, we also checked if EA was also negatively correlated with the harmonic 

mean population size and found the same (Spearman’s ρ = -0.766; P = 1.274×10-5). 

 

LL populations fare worse in alternative environments 

In the alternative environments, we found a significant population type × environment 

interaction, both in terms of carrying capacity (K, mixed-model ANOVA: P = 3.206×10-13; 

F6,255 = 13.42; partial η2 = 0.24 (large effect)) and maximum growth rate (R, mixed-model 

ANOVA: P = 3.61×10-9; F6,255 = 9.244; partial η2 = 0.178 (large effect)). As the interaction 

terms were significant, we chose not to interpret the main effects. 

 

 

Fig. 3.4. LL had significantly lower fitness than SL and SS in alternative environments. (a) 

Fitness expressed in terms of K (mean ± SEM; N = 8). (b) Fitness expressed in terms of R 

(mean ± SEM; N = 8). * refers to cases where the following four conditions are met 

simultaneously: (1) The ANOVA for the population-type triplet reveals significant differences 

after the Benjamini-Hochberg procedure. (2) The difference within the population-type triplet 

has large effect size (partial η2). (3) The pairwise differences between LL-SL and LL-SS are 

significant (Tukey’s HSD (post-hoc)). (4) The pairwise differences between LL-SL and LL-

SS have large or medium effect sizes (Cohen’s d). 11 out of 12 pairwise differences marked by 

* had large effect sizes. † refers to the only case where SL was significantly different from SS. 

‘NS’ refers to cases where the ANOVA for the population-type triplet reveals no significant 

differences after Benjamini-Hochberg procedure. See Table A6.1 and A6.2 (Appendix 6) for 

detailed statistical results. See Table A7.1 (Appendix 7) for the ancestral fitness values. 
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To determine the effects of population type on fitness in alternative environments, we 

performed a separate analysis for each environment, and subjected it to a stringent set of 

conditions before establishing statistical significance (see Materials and methods). We found 

that amongst the three population types, LL had the lowest fitness in alternative environments. 

In terms of K, LL had the lowest fitness in all four alternative environments (Fig. 3.4a). In 

terms of R, LL had the lowest fitness in two alternative environments (Fig. 3.4b). Importantly, 

there was no environment in which LL had significantly higher fitness than SL or SS. As with 

EA, the observations made in Fig. 3.4 can only be attributed to differences in the population 

sizes of LL, SL, and SS during evolution in the antibiotic cocktails. 
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3.4. Discussion 

Large populations pay a cost for adapting faster 

The three population types (LL, SL, and SS) had experienced identical selection environments 

containing the antibiotic cocktail. An earlier study had reported that there was no significant 

difference in their fitness in the selection environment at the same time point at which EA was 

measured in this study (Chavhan et al., 2019a). Moreover, all the three population types had 

descended from the same ancestral colony. Therefore, the observations in Fig. 3.2 and Fig. 3.3 

can only be attributed to the differences in their population sizes experienced during their 

selection history.  

The extant literature shows that increased EA can improve the performance of E. coli in the 

presence of the antibiotics used in our study (Morita et al., 1998; Nikaido and Pagès, 2012; 

Nishino et al., 2009). Hence, the presence of the antibiotics in the selection environment would 

intuitively suggest that EA should either be conserved or enhanced during adaptation to this 

environment. This is consistent with the increase in EA in the SL and SS lines (Fig. 3.3a). 

However, the decay of EA in LL lines demonstrates that even under the same selection 

environment, whether a fitness-related trait will enhance or decay, can depend on the 

population size faced during selection. 

The role of population size in affecting the evolution of a trait is extremely well studied since 

the days of Sewall Wright (Charlesworth, 2009; Goodhart, 1963; Wright, 1984). All else being 

equal, for a given magnitude of stress, larger populations entail reduced effects of drift and 

therefore, stronger effects of selection (Charlesworth, 2009). All the experimental populations 

in our study were large enough for their evolutionary dynamics to be driven primarily via 

selection and not by drift (Cooper, 2018; Desai et al., 2007; Sniegowski and Gerrish, 2010).  

 

Loss of efflux activity is primarily due to pleiotropic response 

Evolutionary changes in a biological character like EA can be explained by two mechanisms 

that need not be mutually exclusive (Cooper and Lenski, 2000; Dorken et al., 2004; Hall and 

Colegrave, 2008; Maughan et al., 2006). The first of these is the accumulation of mutations 

that are neutral to fitness in the selection environment but non-neutral to the biological 

character in question (conventionally known as mutation accumulation (MA) (Cooper and 

Lenski, 2000; Kawecki et al., 1997; Kimura, 1983). The other mechanism is pleiotropy, in 
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which the adaptive variation which gets selected in the selection environment affects the 

biological character in question non-neutrally (Cohan et al., 1994; Cooper, 2014; Holt, 1996; 

Rose and Charlesworth, 1980). However, MA is unlikely to play a significant role in the 

evolution of characters that undergo experimentally detectable phenotypic changes within a 

few hundred generations (Cooper, 2018; Kassen, 2002). Specifically, all three population types 

were derived from the same ancestor. Importantly, all the three types had such large population 

sizes that drift over a few hundred generations is not expected to produce phenotypically 

detectable changes (Cooper, 2018; Desai and Fisher, 2007; Sniegowski and Gerrish, 2010). In 

other words, a time period of approximately 380 generations is too short to observe significant 

effects of MA in our experiments. However, some previous studies have attributed phenotypic 

changes in trait values to MA over similar timescales in similarly sized populations (Hall and 

Colegrave, 2008). Therefore, we briefly examined whether MA can have a significant effect 

on the evolution of efflux activity in our populations.  

Mutation accumulation (MA) and pleiotropy have contrasting dependencies on a variety of 

population genetic parameters. MA is positively related with the rate of spontaneous mutations 

per individual per generation (µ) (Hall and Colegrave, 2008; Kimura, 1983), but is independent 

of the population size (N) (Kimura, 1983) and the speed of adaptation (Cooper, 2014; Cooper 

and Lenski, 2000; Hall and Colegrave, 2008). On the other hand, pleiotropic responses are 

influenced by both N  and µ (Hall and Colegrave, 2008; Kimura, 1983), and are expected to be 

correlated with the speed of adaptation (SoA) (Cooper, 2014; Cooper and Lenski, 2000).  

We found strong negative correlations between EA and SoA (Fig. 3.3 (b and c)), as well as 

between EA and the harmonic mean of population size. Furthermore, we found that the only 

non-LL population that lost its ancestral EA (SL - replicate 4, the outlier marked with an arrow 

in Figs. 2 and 3) was also the only outlier in terms of SoA. This outlier was similar to LL 

populations in terms of adaptation-speed. In other words, SL – replicate 4 was an outlier in 

terms of EA and SoA. However, it was not an outlier in terms of the negative correlations 

shown in Fig 3, making the correlations stronger. Thus, our experimental design enabled us to 

attribute the differences in population size across our treatments to the differences in the 

pleiotropic responses which shaped the evolution of EA (antagonistic pleiotropy in LL but 

synergistic pleiotropy in SL and SS).  

If the LL populations had attained much higher mutation rates than SL and SS during ~ 380 

generations of evolution in identical environments, then they could be expected to show the 
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lowest EA due to heaviest MA. However, any mutation that could increase µ in LL would have 

to appear de novo with the very small frequency of 1/N. Since selection does not act directly 

on mutation-rate-altering loci (Chao and Cox, 1983; Gentile et al., 2011; Orr, 2000; Sniegowski 

et al., 1997), µ-altering mutations spread via hitchhiking with mutations that are direct targets 

of selection. Thus, a mutation that increases µ (henceforth referred to as ‘mutator’) can only 

rise via random drift before an extra non-neutral mutation happens in its lineage. Since the 

occurrence of two mutations within a lineage is a highly improbable event (the maximum 

probability being µ2), the mutator needs to rise to large frequencies before it can start 

hitchhiking with a non-neutral mutation.  

The above argument makes the establishment of a mutator genotype highly unlikely if N is 

large. It has been demonstrated that mutators rise successfully via hitchhiking only if their 

initial frequency is larger than a threshold (Chao and Cox, 1983). Indeed, de novo mutators 

have been shown to go to extinction in most replicate populations (de Visser and Rozen, 2005; 

Giraud et al., 2001; Raynes and Sniegowski, 2014; Sniegowski et al., 1997, 2000; Taddei et 

al., 1997). Therefore, MA is unlikely to explain the fact that almost all replicates of SL and SS 

increased EA while all LL replicates had evolved reduced EA.  

Furthermore, among populations that are large enough to experience clonal interference, the 

evolution of high mutation rate, leading to greater MA, is more likely to happen in smaller 

populations and not in larger ones (de Visser and Rozen 2005; Desai and Fisher 2007; Raynes 

et al. 2012). Indeed, recent experimental studies have demonstrated that despite starting with 

initial frequencies as  high as 30%, the variants with higher mutation rates go to extinction in 

large asexual populations but hitchhike to fixation in small ones (Gentile et al., 2011; Raynes 

et al., 2012). Thus, even in the unlikely scenario of MA influencing efflux over a timescale of 

a few hundred generations, efflux was more likely to decay in SL and SS, not in LL. Since we 

observed the decay of efflux in LL and not SL or SS (Fig. 3.3), MA is unlikely to be an 

explanation for the observed EA patterns.  

Table 3.1 presents a summary of the contrasting expectations of MA and pleiotropy with 

respect to the evolution of EA. Overall, the evolution of EA in our experiments was explained 

much better by correlated response to selection (pleiotropy) and not by random accumulation 

of conditionally neutral mutations.  
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Predictions based on MA 

Predictions based on 

pleiotropy 

Correlation between SoA and EA No correlation Strong correlation * 

Correlation between population size and EA No correlation Strong correlation * 

The population-type most likely to lose EA SL and/or SS LL * 

Convergence between replicates      Low High * 

 

Table 3.1. A summary of experimental predictions of the evolutionary fate of efflux activity 

(EA) based on mutation accumulation (MA) and correlated pleiotropic response. The asterisks 

denote the results that were observed in our experiments. 

 

Quantitative differences in population size can lead to qualitative differences in the result of 

selection on characters 

Biological characters can be lost over evolutionary time if they are unessential or 

disadvantageous (Fong et al., 1995; Jeffery, 2005; Porter and Crandall, 2003; Visser et al., 

2010). The fate of the character in question (whether it decays, gets maintained, or enhances) 

during evolution is expected to be determined by the environment in which evolution occurs 

(Cooper, 2014). For example, extremely dark environments have been invoked to explain the 

loss of eyes in multiple systems (Jeffery, 2005; Protas et al., 2011). Similarly, the metabolic 

erosion observed over >50,000 generations in the Lenski Long-Term Evolution Experiment 

(LTEE) has been linked to the presence of only one usable carbon source throughout evolution 

(Leiby and Marx, 2014). Moreover, the environment in which evolution happens is 

conventionally assumed to be the major factor in determining the utility of the biological 

character in question (Hall and Colegrave, 2008). If in a given environment, the evolution of 

the biological character is largely affected by selection and not by drift, it is expected to result 

either in enhancement/maintenance or in decay of the character (but not both). It has been 

demonstrated empirically that if the selection-environments are different, the same biological 

character can decay by disparate evolutionary mechanisms (MA versus pleiotropy) (Hall and 

Colegrave, 2008). Our study adds to the understanding of evolutionary decay of characters by 
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showing how the character in question can decay or enhance in the same environment based 

on population size (Fig 3). In other words, our study shows that the selection-environment 

cannot always explain divergent evolutionary fates of a biological character. An important goal 

of experimental evolution is to understand how quantitative differences in population genetic 

parameters can lead to qualitatively different evolutionary outcomes. Our study takes a step in 

this direction by demonstrating how quantitative differences (in population size) can translate 

into qualitative differences (decay or enhancement) in a fitness-related trait during evolution. 

 

One important question to ask here is why did the efflux activity decline in the LL populations? 

Although it is not possible to answer this question definitively from our data, we provide a 

brief speculation in this regard. Efflux is known to be an energetically expensive process 

(Nikaido 1994). In the presence of mutations that directly reduce the effects of antibiotic(s), 

efflux enhancing mutations are expected to be deleterious. However, in the absence of such 

mutations, efflux enhancing mutations are expected to be beneficial. Hence, once mutations 

that directly make the antibiotic ineffective arise, decay of efflux could be beneficial to fitness. 

Owing to their large population size, the LL populations could have accessed rare large-effect 

beneficial mutations for loci that directly render the antibiotic(s) ineffective. Therefore, once 

such mutations arose, the LL populations could increase their fitness by the decay of efflux.  

On the other hand, Inaccessibility to such rare mutations in the small populations (SL and SS) 

could have led to positive selection for efflux, which manifested as enhanced EA levels in SL 

and SS after ~380 generations. We note that recent advances in whole-genome whole 

population sequence analysis coupled with appropriate genetic manipulation can potentially be 

used to validate these speculations (Anand et al., 2016; Cooper, 2018; Long et al., 2015). 

However, such an analysis is outside the scope of the present study. 

 

Large populations had lower fitness in alternative environments 

The LL populations not only evolved reduced EA (Fig. 3.3a), they also had the lowest fitness 

among the three types in alternative environments (Fig. 3.4). It should be noted that the reduced 

EA of LL can be linked to low fitness only in two of the four alternative environments 

(ampicillin and high [Cu2+]). This is because the other two alternative environments challenged 

the bacterial population with nutrient-poor conditions (not with xenobiotic chemicals), where 

EA is not expected to directly provide a fitness advantage.  
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In this study, we use random samples of potentially heterogeneous populations for assaying 

fitness in the alternative stressful environments. Such assays can potentially be driven by rare 

outliers with very high fitness values under these unexplored conditions, leading to inflated 

estimates of mean population fitness. We find that in the alternative stressful environments, the 

larger populations (LL)  had lower fitness than the smaller ones (SL and SS).  If the observed 

population-level fitness of LL was driven largely by the rare high fitness genotypes, when we 

remove the effects of these outliers, the robust (i.e., outlier-removed) value of the mean 

phenotype of the LL populations would be even lower than what is currently reported. This 

implies that our estimates about the reduction in fitness of LLs (vis-à-vis the SL and SS 

populations) is conservative. Technically, the same argument could work for the SL and SS 

populations too. However, since the size of these populations is ~16,500 times less than the LL 

populations, theoretically one expects the SL and SS populations to have relatively milder 

outliers owing to their low supply of variation. Thus, our estimates of fitness are expected to 

be more inflated in the larger populations as compared to the smaller ones. Importantly, it is 

highly unlikely that the inflation is higher for the smaller populations. Thus, our observations 

regarding fitness in the alternative environments are likely to be robust to the potential effects 

of rare highly fit outliers.  

 

The fitness trajectories of asexual populations are known to show a decrease in the rate of 

fitness-increase as adaptation progresses (Chavhan et al., 2019a; Cooper and Lenski, 2000; 

Couce and Tenaillon, 2015; Elena and Lenski, 2003; Tenaillon et al., 2016). If pleiotropy plays 

a major role in shaping fitness in alternative environments, periods of faster adaptation are 

known to cause greater loss of unused functions within in a given population (Cooper and 

Lenski, 2000). This leads to the expectation that larger populations (which adapt faster) should 

have lower fitness in alternative environments. We found that this indeed was the case as the 

LL populations had lower fitness in the alternative environments in general. Our results are 

applicable across populations of different sizes and are congruent with those of Cooper and 

Lenski (2000) whose study was applicable within single populations at different times during 

their evolution. However, since the three population types in our experiments eventually 

reached similar fitness in the selection-environment despite initially adapting at different 

speeds, theory predicts that simple pleiotropic responses arising from beneficial mutations 

should lead to similar fitness across the three types in the alternative environments. Since the 
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three population types had significantly different fitness in the alternative environments, such 

simple pleiotropy cannot possibly explain our results.  

The theory of asexual adaptive dynamics predicts that in a population of effective size ‘Ne’ and 

rate of spontaneous beneficial mutations (per genome per cell division) ‘Ub’, the number of 

beneficial mutations that can potentially compete with a beneficial mutation of selection 

coefficient ‘s’ on its way to fixation is given by 2NeUbln(Nes/2) (Sniegowski and Gerrish 2010). 

For all the three population types, even with highly conservative estimates of Ub = 0.0001 and 

s = 0.01, this number amounts to more than a thousand competing beneficial mutations (the 

harmonic mean sizes of our experimental populations were close to 1010 for LL, and 106 for 

SL and SS). Moreover, both the measures of fitness (growth rate and carrying capacity) had 

increased by more than 1.5-fold in all the experimental populations by the end of the 

experiment (Chavhan et al. 2019). This suggests that the reference value of ‘s’ should be much 

larger than 0.01, making the number of competing beneficial mutations even larger. A previous 

~500 generations long experimental evolution study had found that asexual yeast populations 

adapted via dynamics that were best explained by the multiple-mutations paradigm (Desai et 

al. 2007). This paradigm implies that multiple beneficial mutations occurring within a lineage 

can simultaneously rise to high frequencies (Desai and Fisher 2007; Desai et al. 2007). The 

effective size (i.e., harmonic mean ~106) of even the smallest populations in our study (SL/SS) 

were similar to the largest population in Desai et al. (2007). Thus, for the given evolutionary 

time scale and population sizes, the adaptive events in our experimental populations are likely 

to be based on multiple mutations. However, the observations regarding fitness in the 

alternative environments cannot still be explained using a simple (i.e. linear / additive) 

combination of pleiotropic effects of multiple beneficial mutations. This is because if 

pleiotropic effects of multiple mutations just combined additively then, given that all three 

population types (i.e., LL/SL/SS) had the same fitness in the selection environments, they 

would have shown similar fitness values in the alternative environments too. However, this 

was not the case (Fig 4). Thus, to explain the fitness patterns in alternative environments, one 

requires further assumptions about how the pleiotropic effects of multiple mutations interact 

with each other.  

One such assumption can be that the pleiotropic effects of beneficial mutations increase more 

rapidly than linear (say exponential or any other similar non-linear function) with the 

magnitude of direct effects. This is similar to the key assumption made by previous studies that 

large beneficial mutations have substantial pleiotropic effects while small beneficial mutations 



 

76 
 

show negligible pleiotropy (Lande, 1983). Moreover, the pleiotropic effect of a combination 

of multiple mutations can be smaller than the sum of their individual pleiotropic effects, as 

found by a previous study on Escherichia coli populations (Bohannan et al., 1999). Finally, we 

note that these assumptions/possibilities are not mutually exclusive, and their simultaneous 

action can also explain our observations. 

Unfortunately, few studies have rigorously investigated the pleiotropic effects stemming from 

a combination of multiple mutations (Flynn et al., 2013; Schick et al., 2015). A recent study 

demonstrated that although the direct fitness effects of combinations of mutations consistently 

showed diminishing returns in the selection-environments, the pleiotropic fitness effects of 

such mutational combinations were highly variable in alternative environments (Schick et al., 

2015). In other words, the pleiotropic fitness effects of combination of mutations were less than 

the sum of individual pleiotropic effects in some cases but more than the sum in others. (Schick 

et al., 2015). Unfortunately, we are not in a position to ascertain the exact nature of the 

relationship between pleiotropy and fitness, a predicament succinctly summed up by Cooper 

(2014): “The uncertainty of the form of pleiotropic effects reflects a general lack of 

understanding of how mutations interact to affect fitness, particularly over the long term.”  

In summary, our observations regarding the performance in alternative environments suggest 

that pleiotropy can potentially explain the link between SoA and preparedness for alternative 

environmental conditions, and mechanisms like EA need not always be invoked. 

The idea that large populations can adapt so effectively and rapidly to their constant 

environment that they can be rendered vulnerable to future environmental change is new and 

counterintuitive. Our results could be relevant for understanding evolution in asexual 

populations experiencing changes between environments with fitness trade-offs (Andersson 

and Hughes, 2010; Bahri et al., 2009; de Roode et al., 2008). Our study shows that large 

populations can have lower fitness in alternative environments (Fig. 3.4). In such populations, 

adaptation is expected to be driven by mutations with large fitness benefits (Sniegowski and 

Gerrish, 2010), which are typically assumed to be associated with heavier pleiotropic 

disadvantages (Lande, 1983; Orr and Coyne, 1992) that can lead to greater fitness trade-offs. 

Thus, a logical next step would be to test a putative relationship between population sizes and 

fitness-tradeoffs using reciprocal selection experiments in multiple environments. This can 

lead to a better understanding of the population genetics of fitness trade-offs and ecological 
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specialization (Cooper and Lenski, 2000; Fry, 1996; Kassen, 2002, 2014; Rodríguez-Verdugo 

et al., 2014; Schick et al., 2015).  

It is a well-established notion that very small population sizes can lead to such strong effects 

of genetic drift that the latter can overshadow selection and preclude adaptation (Charlesworth, 

2009). Here we show that very large population sizes (as in LL), while leading to rapid 

adaptation in the current environment, can also render populations vulnerable to sudden 

environmental changes. Taken together, these insights point to a trade-off between maximizing 

adaptation rate and avoiding becoming vulnerable to environmental changes. Thus, populations 

that are small enough to avoid pleiotropic disadvantages but large enough to adapt (albeit 

slowly) to the current conditions (like SL and SS) can face environmental changes better than 

very large populations (like LL). We have used periodically bottlenecked bacterial populations 

to demonstrate the above trade-off. Therefore, our counterintuitive results can potentially have 

important implications for the fate of naturally occurring microbial populations that face 

periodic bottlenecks (e.g., host-to-host transfer of gut microbiota or pathogens), particularly if 

their environment changes in bouts. By demonstrating a novel link between population size 

and the immediate response to sudden environmental changes, our study thus adds to the 

prospering field of the evolution of evolvability (Carter et al., 2005; Crombach and Hogeweg, 

2008; Jones et al., 2007; Wagner, 2013).  
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Chapter 4 

Minimal requirements for divergent character 

fates in populations adapting to the  

same environment at different sizes 

 

Highlights 

• We used Wright Fisher simulations to investigate the minimal set of conditions that can 

translate differences in the sizes of asexual populations adapting to the same environment 

into antagonistic fates of an important fitness-affecting character. 

• We studied the interactive effects of sign epistasis and differential mutational supply on 

the dynamics of evolution in asexual populations of different sizes. 

• We found that the simultaneous presence of sign epistasis and differential mutational 

supply are essential to obtain divergent evolution of a fitness-affecting character during 

adaptation to the same environment. Importantly, the removal of any one of these two 

conditions results in convergent (and not divergent) character evolution. 

• Our results have important implications for understanding how selection manifests itself 

in asexual populations of different sizes, particularly in the presence of sign epistasis. 

 

 

 

 

 

 

Chavhan, Y.D., Shah, S., and Dey, S. (2019).  Minimal requirements for divergent character 

fates in populations adapting to the same environment at different sizes (Manuscript under 

preparation). 
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4.1. Introduction 

Random genetic drift and natural selection, two of the major mechanisms of evolution, affect 

the variation in biological traits in fundamentally different ways (McShea and Brandon, 2010). 

Genetic drift leads to stochastic changes in the population-wide distributions of trait values 

regardless of how they affect fitness (Futuyma, 2005). On the other hand, natural selection 

causes non-random changes in trait-distributions based on how individual trait values map to 

fitness in the given environmental context (Rice, 2004). Thus, when genetic drift (and not 

natural selection) is the primary mechanism driving the evolution of a biological character, the 

average trait value may decrease over time (i.e., decay) or enhance merely by chance (Hall and 

Colegrave, 2008). Here the term ‘character’ refers to a phenotypic attribute of an organism that 

is heritable; the term ‘trait’ represents a variant of the character in question. For example, plant 

height can be thought of as a biological character and ‘tall’ or ‘short’ as two distinct traits in 

this regard. Thus, genetic drift can manifest itself as the decay of the biological character in 

question in some replicate populations and its enhancement in some others. However, when 

the evolution of the character in question is driven largely by natural selection (and not genetic 

drift), it is expected to result either in the decay of the character or in its enhancement (but not 

both). Hence, when natural selection overwhelms genetic drift, different replicate populations 

are expected to result in convergent evolutionary changes in the biological character in 

question. Moreover, when selection shapes evolution more than drift, the fates of biological 

characters are conventionally assumed to be determined by the environment in which evolution 

takes place (Hall and Colegrave, 2008). Thus, characters can be lost during the course of 

evolution if they are detrimental to fitness (they carry a fitness cost) or are unessential in the 

environment in which evolution happens (Fong et al., 1995; Jeffery, 2005; Porter and Crandall, 

2003; Visser et al., 2010). For instance, dark environments (where photoreception is expected 

to be unessential or costly) have been invoked to explain the loss of eyes in multiple taxa 

(Jeffery, 2005; Protas et al., 2011).  Similarly, the metabolic erosion documented in Richard 

Lenski’s famous long-term evolution experiment has been linked to the presence of only one 

usable source of carbon (glucose) (Cooper and Lenski, 2000). Thus, the environment in which 

evolution happens has conventionally been expected to determine the utility of biological 

characters. Is it possible for a biological character to have divergent utilities (and therefore 

divergent adaptive fates) in the same environment?  
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As discussed in the previous chapter (published as Chavhan et al., 2019b), we have found 

empirical evidence that adaptation to the same environment can result in divergent fates (decay 

versus enhancement) of an important fitness-associated character based on differences in 

population size. Specifically, while adapting to an environment with a cocktail of three 

antibiotics, the efflux activity enhanced in the small bacterial populations but decayed in the 

larger ones.  

Here we use individual-based Wright-Fisher simulations to determine the population-genetic 

requirements that can reproduce such divergent evolution of a fitness-affecting biological 

character in adapting asexual populations of different sizes undergoing selection. Thus, our aim 

is to simulate the process of evolution in a single environment while meeting the following 

requirements: (1) All populations under consideration must adapt to the environment in 

question (the average fitness must increase). (2) In populations of a given size, the character in 

question must have convergent evolutionary fate across replicates. In other words, the 

evolution of the character in question (henceforth referred to as the ‘focal character’) must be 

driven largely by selection and not by random genetic drift.  

The observations of Chapter 3 in terms of the evolution of efflux activity indicate that mutations 

that enhanced efflux were beneficial in the small populations but deleterious in the larger ones. 

Thus, simulating the empirical observations of Chapter 3 while adhering to the two conditions 

listed above requires that mutations which enhance the trait value of the focal character are 

expected to be deleterious in larger populations but beneficial in the smaller ones. Along similar 

lines, mutations that result in the decay of the focal character are expected to be beneficial in 

larger populations but deleterious in the smaller ones. Thus, the mapping between the 

expression of our focal character and fitness in the environment needs to be variable (not 

unique). In principle, such variable mapping between our focal character and fitness can 

potentially occur in two contexts: (i) mutations causing high character expression can lead to 

high or low fitness, depending upon the environment in question (Cooper, 2014; Kassen, 2002); 

(ii) mutations that enhance the expression of the focal character can be beneficial in some 

genetic background but deleterious in others (Weinreich et al., 2005). Since we consider only 

a single environment here, differences in environments cannot provide the basis for the 

variability in the mapping required by the current study. Hence, the genetic background can be 

the only potential source of such variability. In other words, simulating the empirical results of 

Chapter 3 requires that mutations that enhance the focal character are beneficial on some 

genetic backgrounds but deleterious on others. The phenomenon where the selective effect of 
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a mutation depends upon the genetic background is conventionally referred to as epistasis 

(Cordell, 2002; Fenster et al., 1997).  

Epistasis is an umbrella term that encompasses all the cases where alleles at two or more loci 

interact with each other to affect the phenotype (Lehner, 2011; de Visser et al., 2011). 

Statistically speaking, epistasis occurs when the interactions between the effects of alleles at 

different loci are more important than their main effects (Fenster et al., 1997). Thus, epistasis 

makes combinations of multiple loci deviate from the expectation of additivity in their in 

individual effects (Cordell, 2002). In its simplest form, epistasis makes the effect of a 

combination of distinct loci deviate from their additive effects only in terms of magnitude (and 

not sign). Such epistasis is conventionally categorized as ‘magnitude epistasis’ (Remold, 

2012), and is commonly observed in combinations of multiple beneficial mutations (Chou et 

al., 2011; Kryazhimskiy et al., 2014). In extreme cases, the sign of the effect of a mutation on 

fitness in the given environment can itself be under epistatic control, making a mutation 

beneficial in the given environment on some genetic backgrounds but deleterious on others. 

Such epistasis is conventionally known as ‘sign epistasis’ (Weinreich et al., 2005), and has 

been observed in multiple studies in asexual systems (Carroll et al., 2014; Szendro et al., 2013a; 

Zee et al., 2014).  

As described above, our simulations require that the sign of the fitness effects of individual 

mutations that enhance the focal character is contingent on the genetic background. Therefore, 

such mutations are expected to exhibit sign epistasis. Moreover, since all the populations in the 

evolution experiment pertaining to Chapter 3 had a common ancestor, all the populations in 

our simulations also need to start with the same ancestor. Thus, all the asexual populations in 

our simulations need to originate from the same genetic background, regardless of their size.  

Since we aim to simulate that the focal character decays during adaptation in large populations 

but enhances during adaptation in smaller ones, our simulations would require that populations 

of vastly different sizes diverge genotypically with respect to each other as they adapt to their 

common environments. What could be the source of such genotypic divergence in asexual 

populations of different sizes originating from the same ancestor and adapting to the same 

environment? As discussed in the previous chapter, adaptation in extremely large asexual 

populations is primarily driven by beneficial mutations of large effect sizes (Sniegowski and 

Gerrish, 2010). Since mutations of larger benefit sizes are generally expected to be rarer (Eyre-

Walker and Keightley, 2007; Kassen and Bataillon, 2006; Neher, 2013), mutations that confer 

large benefits can be too rare to be accessible to small populations (Desai and Fisher, 2007; 
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Sniegowski and Gerrish, 2010). In the absence of such large effect beneficial mutations, 

adaptation is expected to occur slowly in small populations, driven largely by relatively 

common mutations that carry small benefits. Thus, if populations of vastly different sizes adapt 

to the same environment, the range of beneficial mutations that rise in frequencies within the 

smaller populations is predicted to be different from that in the larger ones. Such differences 

can be a potential source of variation in the genetic backgrounds across populations of different 

sizes originating from the same ancestor; epistasis can come into action once such variation in 

genetic background arises.  

We constructed a Wright Fisher model incorporating the features described above to study the 

interactive effects of sign epistasis and differential mutational supply on the dynamics of 

evolution in asexual populations of different sizes. Next, we relaxed the above conditions to 

arrive at the minimum framework required to simulate divergent evolution of a fitness-

affecting focal character in populations of different sizes adapting to the same environment. 

We show that differential per generation mutational supply across fitness affecting loci and 

sign epistasis across these loci are the minimum requirements for reproducing the observations 

of Chapter 3 in a generalizable manner. 
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4. 2. Methods 

Model 1 

We constructed an individual-based model of asexual Wright-Fisher populations with discrete 

generations (Charlesworth, 2009; Fisher, 1931; Rice, 2004). The populations were composed 

of haploid individuals and the size of any given population remained constant across 

generations. The genome of each individual was conceptualized as a combination of two 

fitness-affecting loci (A and B), each with three discrete allelic states (L (low gene expression), 

O (intermediate gene expression), and H (high gene expression)). This gave rise to a discrete 

genotype space containing nine different genotypes. Each locus underwent random mutations 

independent of the other locus. We categorized all mutations that reduced gene expression as 

deleterious and mutations that enhanced gene expression as beneficial. In agreement with 

theoretically and empirically established trends of distributions of mutational effects (Eyre-

Walker and Keightley, 2007; Fisher, 1930; Kassen and Bataillon, 2006; Neher, 2013), 

deleterious mutations were much more probable than beneficial mutations in our model. The 

occurrence of two simultaneous mutations in an individual was so unlikely that such an event 

can be ignored given the range of population sizes used in our simulations. We used a landscape 

with arbitrarily assigned fitness values (Jain et al., 2011), whose shape changed according to 

the population genetic treatment in question (see below). The fitness value of each individual 

was taken as the number of offspring produced by it in each generation (e.g., the fitness values 

of  HL and LL are 5 and 1, respectively (Fig. 4.1)). We used a two-letter notation for the 

genotypes in this model, with the first and second letters representing the allelic states of loci 

A and B, respectively. We arbitrarily assigned OO as the wild-type genotype and started all 

our simulations using clonal population composed completely of OO individuals. Every 

generation, each population grew in size based on the fitness of its constituent individuals and 

was bottlenecked down to its original size via random sampling. We let all our simulated 

populations evolve for one thousand generations and tracked the frequencies of all the nine 

genotypes within a given population throughout this duration. We also determined the average 

population fitness after each generation and used this information to reconstruct trajectories of 

fitness increase during evolution. We carried out these simulations at a wide range of 

population sizes, spanning from 103 to 107 individuals.  

There were two key readouts from our simulations: (1) How much a given population has 

adapted during the 1000 generations of evolution. (2) What is the composition of the population 
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at any given time. We used this information to determine whether the two loci evolved towards 

opposite (divergent) allelic states in our simulations.  

Treatment: Sign Epistasis 

In all the two-locus fitness landscapes throughout our study, higher expression of locus B 

always led to higher fitness values, regardless of the allelic state at locus A (Fig. 4.1). In our 

principal treatment, locus A showed sign epistasis on locus B backgrounds such that higher 

expression of gene A was beneficial on the BL or BO backgrounds but deleterious on the BH 

background (Fig. 4.1a).  

We also conducted control simulations where such sign epistasis was removed such that higher 

expression of gene A was always beneficial, regardless of the allelic state at locus at locus B 

(Fig. 4.1b). 

 

 

Fig. 4.1. Two-locus three-allele fitness landscapes. The values on top of each genotype 

represent its fitness. (a) Landscape with locus A showing sign epistasis on locus B 

backgrounds. (b) Landscape without any sign epistasis.  

  

Treatment: Differential mutational supply across loci 

In our principal treatment, locus A and locus B mutated with different rates (µ). Specifically, 

mutations on locus A were more common than mutations on locus B. This gave rise to the trend 

of mutation rates across shown in Fig. 4.2. The exact values of the mutation rates used in our 

simulations are given in Table 4.1. 
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We also conducted control simulations where such differences in mutational supply across the 

two loci was removed. Such control simulations were of two kinds, one in which both the loci 

followed the mutational tendencies belonging to locus A in Fig. 4.2, and the other in which 

both the loci mutated like locus B in Fig. 4.2. 

 

 

Fig. 4.2. Differential mutation rates across loci A and B. Locus A mutated much more 

frequently than locus B. 

 

Mutation rate category Value 

Very common 10-3 

Common 5 × 10-4 

Rare 5 × 10-5 

Very rare 5 × 10-8 

Very very rare 10-9 

 

Table 4.1. Mutation rate values corresponding to the differential mutational supply across loci 

A and B (see Fig. 4.2). 



 

86 
 

Model 2 

We carried out a separate set of simulations with a three-locus three-allele framework. To this 

end, we added one extra locus (locus C) to Model 1 and used the same three allelic states as 

before (L, O, and H). Here the character in question was controlled by the expression of both 

loci A and C, with higher expression leading to greater trait value. Since locus C was equivalent 

to locus A, the two loci had identical mutational tendencies, and thus mutated much more 

frequently than locus B (see Fig. 4.2 and Table 4.1). Similar to locus A of Model 1, loci A and 

C of Model 2 showed sign epistasis on locus B backgrounds (their higher expression being 

beneficial on BL and BO backgrounds, but deleterious on the BH background).  

Our experiments (Chapter 3) had revealed that the small and large populations had eventually 

reached similar fitness despite evolving divergent fates in terms of efflux activity. This suggests 

that the small and large populations would have taken different mutational paths, eventually 

reaching different destinations with similar fitness. This indicates the existence of multiple 

global peaks in our experiments, with at least one peak being mutationally accessible to the 

small populations. However, the mutational tendencies of Model 1 entailed that the global peak 

can be reached only via large-effect beneficial mutations that are too rare to be accessible to 

small populations. Interestingly, small asexual populations can accrue multiple small-effect 

mutations and eventually reach the same fitness as large populations (Cvijović et al., 2018; 

Desai, 2013). Furthermore, as shown in Fig. 4.3, if loci A and C show such dependence on 

locus B and the latter’s fitness effects are independent of the former two, the resulting landscape 

cannot have two distinct global fitness peaks.  

We created a fitness landscape with two global peaks by allowing the expression of locus B to 

be influenced by the A and C backgrounds to a very small degree. In this fitness landscape, 

loci A and C still show sign epistasis on locus B backgrounds in most regions of the genotypic 

space. To this end, we first combined two different two-locus fitness landscapes similar to the 

landscape of Model 1 (one with loci B and A and the other with loci B and C) to obtain a three-

locus landscape where A and C showed sign epistasis on B backgrounds. Since this three-locus 

landscape had only one peak (LHL), we tweaked the landscape to introduce an extra global 

fitness peak with high expression of both A and C. The resulting 4d fitness landscape 

comprising 27 different genotypes and adhering to the above conditions is shown in Fig. 4.4.  
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Fig. 4.3. The figure shows 27 boxes, each corresponding to one genotype on a three-locus 

three-allele landscape. All pairwise arrows point towards genotypes of higher fitness, 

regardless of their color. The green arrows depict that in terms of fitness, BH > BO > BL, 

regardless of the allelic states of loci A and C. All the lowercase English and Greek letters have 

positive values. English letters represent fitness changes due to changes on locus B; Greek 

letters represent fitness changes due to changes on loci A and C. The grey arrows show the 

pairwise fitness trends across the allelic states of loci A and C. The HOH genotype is assumed 

to have fitness p. Since BH > BO in terms of fitness, HHH will have a higher fitness than HOH, 

depicted as p + m. Sign epistasis demands that on the BH background, AH < AO < AL in terms 

of fitness. The same logic applies to CH < CO < CL on the BH background. We follow the 

blue arrows to compare the fitness of the LHL genotype with that of HHH. It is clear that LHL 

must be fitter than HOH (and all other genotypes). Thus, LHL also represents the global fitness 

peak. Therefore, a fitness landscape where two loci (A and C) individually show sign epistasis 

on the background of a third locus (B) cannot have multiple global peaks with opposite allelic 

states of loci A and C if the fitness effects of locus B are independent of the other two loci. 
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Fig. 4.4. The three-locus three-allele fitness landscape used in Model 2. The genotypic space 

is shown here as a cube with 27 distinct nodes, where each node represents one genotype. The 

fitness of each genotype is represented by the number (and also by its color, following the code 

shown on the right). The three axes shown on the left correspond to the three loci (A, B, and 

C), with the origin at LLL and the arrows pointing towards direction of allelic states with higher 

gene expression. The wild type (OOO) has a fitness of 8 on this landscape and is shown in 

green.  
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4.3. Results and Discussion 

Model 1 

Large populations reached the global fitness peak, but small populations could not 

In our principal treatment (with both sign epistasis and differential mutational supply across 

loci A and B), we observed different dynamics of fitness increase in populations of different 

sizes. Specifically, the larger populations not only adapted much faster than the smaller ones, 

they also adapted to a greater extent (Fig. 4.5).  

 

Fig. 4.5. Trajectories of average fitness on the two-locus landscape with sign epistasis in 

populations of different sizes when there was differential mutational supply across the two loci. 

The wild-type fitness was 4; the global fitness peak corresponded to 9.  
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Most populations with a size of at least 105 individuals succeeded in reaching the global fitness 

peak. On the other hand, most populations with ≤ 104 individuals could not reach the global 

fitness peak (Fig. 4.5). The smallest path between the wild-type genotype and the global fitness 

peak involved two mutational steps on the two-locus landscape (Fig. 4.1a). One of these 

mutations (BO to BH) had an extremely small probability of occurrence (5 × 10-8), making it 

inaccessible for populations of small sizes (< 105 individuals). However, such small 

populations could readily arrive at the AO) to AH  mutation. Since this mutation was beneficial 

on the BL and BO backgrounds, even the small populations could readily attain a 50% fitness 

increase by converging on the HO genotype (Fig. 4.5, 4.6 and 4.7). Thus, populations of both 

small and large sizes were successful in increasing their fitness on the two-locus fitness 

landscape. 

 

Locus A evolved divergent fates in populations adapting on the same landscape at different 

sizes 

We found that most populations with 104 or lesser individuals evolved enhanced expression of 

gene A during adaptation while populations with 105 or more individuals adapted by reducing 

the expression of gene A (Fig. 4.6 and 4.7). Thus, a combination of sign epistasis and 

differential mutational supply across loci can successfully lead to divergent fates of fitness-

affecting characters in populations adapting to the same landscape at different sizes. Hence, the 

fitness landscape of Fig. 4.1a and the mutational tendencies of Fig. 4.2 can be a potential 

explanation of the empirical observations regarding the divergent evolution of efflux activity 

in populations of different sizes as reported in the previous chapter.  

Interestingly, the populations that were successful in reaching the global fitness peak (LH) 

showed two distinct kinds of adaptive trajectories. Among such populations, most of the 

smaller ones (104 and 105) showed staircase like trajectories of fitness increase (with long 

stretches of no fitness increases) while most populations with ≥ 106 individuals showed smooth 

trajectories (Fig. 4.5).  

Staircase-like trajectories occur when populations wait for new beneficial mutations to arrive 

and rise via natural selection (Sniegowski and Gerrish, 2010). Most of the staircase-like 

trajectories showed a two-step fitness increase punctuated by a flat region at an average fitness 

of 6. By probing population compositions in the flat regions, we confirmed that the HO 

genotype (fitness = 6) had risen to very high frequencies in most populations that displayed a 



 

91 
 

staircase. Curiously, the distance between HO and the global peak (LH) is larger than the 

distance between the wild-type (OO) and the global peak. Moreover, the mutation rates in our 

study (Fig. 4.2 and Table 4.1) are low enough to disregard the probability of multiple mutations 

happening in the population sizes under consideration. Taken together, the genotype that 

initially rose to high frequencies (i.e., HO) was leapfrogged by a mutation originating on 

another genetic background (Gerrish and Lenski, 1998) (this was confirmed using high-

resolution time-series of genotypic distributions).  

 

Fig. 4.6. The composition of simulated populations after 1000 generations of evolution on the 

two-locus fitness landscape with epistasis and differential mutational supply across the two 

loci. The error bars represent SEM (N=10). The small populations (≤ 104) had largely 

converged on the HO genotype (which had fitness = 6) while the large populations (≥ 105) had 

primarily converged on the LH genotype (which had fitness = 6). Overall, while both small and 

large populations adapted on the two-locus fitness landscape, the expression of gene A 

enhanced in relatively smaller populations but decayed in relatively larger ones. Also see Fig. 

4.7. 
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Fig. 4.7. Frequency distributions within populations of different sizes after 1000 generations 

of evolution on the two-locus fitness landscape with sign epistasis and differential mutational 

supply across the two loci. The color scale shown on the right refers to within population 

frequencies. Almost all populations showed fixation of a single genotype after 1000 

generations of evolution. Whereas the small populations (≤ 104) had largely fixed on the HO 

genotype, the larger ones (≥ 105) had primarily fixed on the LH genotype. 

 

Taken together, the simultaneous presence of sign epistasis and differential mutation supply 

across loci can translate quantitative differences in population sizes to qualitative differences 

(enhancement versus decay) in the fate of a fitness-affecting character during adaptation in the 

same environment. Next, we eliminated sign epistasis and differential mutational supply, both 
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one-by-one and in combination, to determine the minimal conditions for evolving divergent 

character fates in large versus small populations. 

 

Removal of sign epistasis led to convergent character fates across large and small 

populations 

We used the fitness landscape shown in Fig. 4.1b to remove sign epistasis from our control 

simulations while still using the mutational tendencies shown in Fig. 4.2 and Table 4.1. We 

found that in the absence of sign epistasis, populations of several different sizes ranging from 

103 to 107 individuals evolved convergent fates of the character in question (controlled by locus  

 

Fig. 4.8. The composition of simulated populations after 1000 generations of evolution with 

differential mutational supply across the two loci but without sign epistasis. The error bars 

represent SEM (N=10). All the simulated populations evolved enhanced expression of gene A, 

regardless of the population size.  
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A) (Fig. 4.8). Specifically, adaptation on the two-locus fitness landscape without sign epistasis 

resulted in enhanced expression of gene A in both large and small populations despite the 

presence of differential mutational supply across the two loci (Fig. 4.8). Thus, sign epistasis 

was an essential requirement for divergent evolution of character fates across populations 

adapting to the same environment at different sizes.   

 

Fig. 4.9. The composition of simulated populations after 1000 generations of evolution with 

sign epistasis but without differential mutational supply across the two loci. The mutational 

tendencies of locus B were made identical to those of locus A in these simulations, and both 

the loci had mutational tendencies as shown in the left half of Fig. 4.2. The LH genotype was 

the global maximum. The error bars represent SEM (N=10). All the simulated populations 

evolved decayed expression of gene A, regardless of the population size.  
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Identical mutational supply at the two loci prevented the divergence of character fates across 

large and small populations 

In another set of controls, we simulated evolution in the presence of sign epistasis but without 

differential mutational supply across the two loci. The differences in mutational supply across 

loci A and B can be removed in two distinct ways. First, by making both the loci follow the 

mutational tendencies of locus A. Second, by making them follow the mutational tendencies 

of locus B. We conducted both kinds of simulations and determined the evolution of character 

fates across populations adapting to the same environment at different sizes. 

 

Fig. 4.10. The composition of simulated populations after 1000 generations of evolution with 

sign epistasis but without differential mutational supply across the two loci. The mutational 

tendencies of locus A were made identical to those of locus B in these simulations, and both 

the loci had mutational tendencies as shown in the right half of Fig. 4.2. The error bars represent 

SEM (N=10). There was no divergence of character fates (decay versus enhancement) across 

populations of different sizes. The small populations (≤ 104) largely remained on the ancestral 

OO genotype; the larger populations (≥ 105) primarily converged on the LH genotype. 
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In the treatment with differential mutational supply across the two loci, the BO to BH mutation 

was inaccessible to populations of sizes smaller than 105 individuals. However, when both the 

loci followed the mutational tendencies of locus A in the control simulations, the BO to BH 

mutation became readily accessible, even to populations with only 102 individuals. This led to 

highly convergent adaptation where populations of all sizes successfully fixed on the global 

fitness peak within 1000 generations (Fig. 4.9).  

The AO to AH mutation was readily accessible to populations of 102 individuals in the 

treatment with differential mutational supply across the two loci. However, when both the loci 

followed the mutational tendencies of locus B in the control simulations, the probability of an 

AO to AH reduced by three orders of magnitude and became identical to the probability of a 

BO to BH mutation (Fig. 4.2 and Table 4.1), rendering both these mutations largely 

inaccessible to populations with ≤ 104 individuals. In the absence of these mutations, the 

populations with ≤ 104 individuals largely remained at the wild-type genotype, even after 1000 

generations of evolution (Fig. 4.10). Contrastingly, most populations with ≥ 105 individuals 

could access the global fitness peak, and thus converged on the latter within 1000 generations 

(Fig. 4.10). Most importantly, there was no divergence (decay versus enhancement) in the fate 

of either of the two characters (controlled by loci A and B, respectively). 

Taken together, Fig. 4.9 and Fig. 4.10 show that differential mutational supply is also essential 

for divergent character evolution across populations adapting to the identical environmental 

conditions at different sizes. 

We also conducted double-control simulations in which populations evolved in the absence of 

both sign epistasis and differential mutation supply across loci. As described earlier, there are 

two distinct ways of making the mutational supply uniform across the two loci. Therefore, we 

conducted two different sets of double-control simulations. In the absence of sign epistasis,  

when both the loci followed the mutational tendencies of locus A, all the simulated populations 

(with sizes ranging from 102 to 107) converged on the global fitness peak (Fig. 4.11). When 

both the loci followed the mutational tendencies of locus B, in the absence of sign epistasis, 

the populations with ≤ 103 individuals either remained at the wild-type genotype or evolved 

enhanced expression at one of the two genes (Fig. 4.12). On the other hand, most populations 

with ≥ 105 individuals converged the global fitness peak (which was shifted from LH to HH by 

the removal of sign epistasis) (Fig. 4.12). Importantly, there was no character divergence across 

adapting populations of different sizes (ranging from 102 to 107 individuals). Overall, the 
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simultaneous absence of sign epistasis and differential mutational supply across loci failed to 

lead to qualitative changes in character fates across populations adapting to the same 

environment at different sizes.  

 

 

Fig. 4.11. The composition of simulated populations after 1000 generations of evolution 

without both sign epistasis and differential mutational supply across the two loci. The 

mutational tendencies of locus B were made identical to those of locus A in these simulations, 

and both the loci had mutational tendencies as shown in the left half of Fig. 4.2. The error bars 

represent SEM (N=10). Convergent (and not divergent) character evolution was observed. 
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Fig. 4.12. The composition of simulated populations after 1000 generations of evolution 

without both sign epistasis and differential mutational supply across the two loci. The 

mutational tendencies of locus A were made identical to those of locus B in these simulations, 

and both the loci had mutational tendencies as shown in the right half of Fig. 4.2. The error 

bars represent SEM (N=10). Divergent character evolution was not observed.  

 

Thus, we reached the conclusion that an interplay of sign epistasis and differential mutational 

supply is essential for reproducing the empirical observations regarding the evolution of efflux 

activity reported in the previous chapter (Chavhan et al., 2019b). To begin with, like efflux 

activity, the biological character controlled by locus A decayed in the larger populations but 

enhanced in the smaller ones. The decay of this character in the simulated populations was 

contingent on the chance arrival of a BO to BH (beneficial) mutation, which was more likely 

in the larger populations than the smaller ones. Indeed, we found that most populations ranging 
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in size between 103 to 104 individuals could not arrive at this mutation and hence the gene 

expression from locus A did not decay in them. Interestingly, the rare (outlier) populations of 

sizes between 103 to 104 individuals that arrived at the BO to BH mutation eventually 

experienced a decay in the A gene expression similar to the large populations (≥ 105) (Fig. 4.6 

and 4.7). This is similar to the empirical observation of the previous chapter that one out of 

eight replicates of the small (SL) populations experienced a decay in efflux activity similar to 

the large populations.  

However, not all aspects of the empirical results were thus reproduced. Specifically, an 

important aspect of the empirical observations of Chapter 3 that could not be mimicked by 

Model 1 is that the fitness of the small and large populations was statistically indistinguishable  

at the end of the experiment. Thus, despite evolving divergent fates of efflux activity 

(enhancement versus decay), small and large populations had reached similar fitness. In 

contrast to our experiment, in Model 1, the populations that experienced expression decay at 

locus A were much fitter than populations that evolved enhanced expression of locus A (Fig. 

4.5). Two different possibilities can account for this discrepancy between our experiment and 

Model 1. First, in our experiments, the large and small populations had reached different 

fitness, but our assays failed to establish these differences statistically. Second, there were 

multiple fitness peaks in our experiment, one with enhanced efflux activity and the other with 

reduced efflux. We investigated the second possibility by making another model (Model 2) 

based on a three-locus three-allele framework (see Methods).  

 

Model 2 

Populations of different sizes can eventually reach similar fitness peaks via different 

mutational paths 

We made asexual populations of several different sizes evolve on the three-locus fitness 

landscape of Fig. 4.4 with loci A and C mutating much more frequently than locus B. We found 

that although all simulated populations with sizes ranging from 102 to 5  × 105 individuals 

adapted to some extent, all populations of sizes ≥ 5  × 105 individuals could attain the highest 

possible average fitness within 1000 generations, albeit at different speeds (Fig. 4.13). 

Moreover, most populations of sizes ≤ 104 individuals failed to fix on any of the two fitness 

peaks on the three-locus landscape (Fig. 4.13).  
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Interestingly, amongst the populations that succeeded in attaining the highest possible average 

fitness, the smaller ones evolved enhanced expression of loci A and C while the larger ones 

evolved decayed expression of the focal trait. Specifically, whereas most populations of size 

107 individuals became fixed on the LHL genotype, most populations of size 5 × 105 

individuals became fixed on the HOH genotype (Fig. 4.14 and Fig. 4.15). These genotypes 

correspond to the two global fitness peaks (shown in red in Fig. 4.2). This is similar to the 

empirical observation made in Chapter 3 regarding the divergent evolution of efflux activity in 

populations of different sizes despite the latter attaining similar average fitness.  

 

Fig. 4.13. Trajectories of average fitness on the three-locus landscape with sign epistasis in 

populations of different sizes when there was differential mutational supply across loci. The 

wild-type fitness was 8; the global fitness peak corresponded to 14. 
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Locus A of Model 1 and loci A and C of Model 2 can be imagined as genes whose expression 

requires significant resources. Therefore, if their expression is rendered unessential in some 

environmental and/or genetic background, alleles that show reduced expression would be 

beneficial to fitness while alleles that enhance expression would be selected against. In our 

study, the allelic state BH provides the genetic background in which higher expression at loci 

A and C becomes largely deleterious. In the context of the experiment reported in Chapter 3, 

Locus B can be imagined to code for a specific structural target of a xenobiotic drug. On the  

 

Fig. 4. 14. The composition of simulated populations after 1000 generations of evolution on 

the three-locus fitness landscape with epistasis and differential mutational supply across loci. 

The error bars represent SEM (N=10). The expression of genes A and C enhanced in relatively 

smaller populations but decayed in relatively larger ones. Also see Fig. 4.15. 
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other hand, locus A in Model 1 and loci A and C in Model 2 can be imagined to code for a 

variety of efflux pumps that can throw the drug out. If locus B can acquire a structural mutation 

(BH) that inhibits the binding of the drug, the energy intensive pumps encoded by loci A and  

 

Fig. 4.15. Frequency distributions within populations of different sizes after 1000 generations 

of evolution on the three-locus fitness landscape with sign epistasis and differential mutational 

supply across the loci. The color scale shown on the right refers to within population 

frequencies. Most populations showed fixation of a single genotype after 1000 generations of 

evolution. Amongst populations that reached the highest possible average fitness (see Fig. 

4.13), while the small populations (≤ 5  × 105) largely fixed on the HOH genotype, the large 

ones (≥ 106) primarily fixed on the LHL genotype. 
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C become deleterious to fitness. Since xenobiotic drugs tend to have highly specific targets 

(Bakheet and Doig, 2010; Kohanski et al., 2010), mutations like BO to BH are expected to 

occur at very low rates. On the other hand,  bacteria are known to have several promiscuous 

efflux pumps with overlapping targets (Nikaido and Takatsuka, 2009; Piddock, 2006; Vargiu 

and Nikaido, 2012; Yu et al., 2003). Therefore, mutations that can potentially increase the 

overall efflux activity (AO to  AH and CO to CH) are expected to have relatively higher rates 

than BO to BH mutations. In this context, when an individual acquires the BO to BH mutation, 

the xenobiotic drug cannot bind to its target. Thus, even if such a drug remains in the cell, it 

would be rendered harmless by a BO to BH mutation. Moreover, any mutation that inhibits the 

binding of this drug to its target it would always be a beneficial, regardless of whether the drug 

remains within the cell or is thrown out of the cell by active efflux. This means that a BO to 

BH mutation would be beneficial regardless of the efflux activity (controlled by the allelic 

states at loci A and C). In contrast to this, the utility of efflux activity depends on whether the 

xenobiotic drug can bind to its target or not. This is because efflux is an energy intensive 

process (see Chapter 3), and its decay would be favored if the xenobiotic drug cannot bind its 

target (in the presence of a BO to BH mutation). However, when  this mutation is absent, the 

drug succeeds in binding to its target, and the only way to combat it is through active efflux. 

Thus, in the absence of a BO to BH mutation, mutations that enhance the gene expression from 

loci A and C should be beneficial. This explains the unidirectionality of the sign epistasis used 

in Model 1 (and also found over the majority of the landscape in Model 2).  

Taken together, evolution on the fitness landscapes of Fig. 4.1a and 4.4 can mimic the divergent 

evolution of efflux in populations adapting to the same environment at different sizes, the key 

observation of Chapter 3. While the landscape of Fig. 4.4 also gives rise to similar eventual 

fitness in small and large populations (matching the corresponding observation of Chapter 3), 

it must be emphasized that locus B has a sign epistatic control over the expression of loci A 

and C over most (but not all) regions of this landscape. As shown in Fig. 4.3, a strict sign 

epistatic control of loci A and C by locus B (with the latter’s fitness effects being independent 

of the former two) can only result in a single global fitness peak. While it is possible for small 

and large populations to have divergent character fates on such a landscape with strict sign 

epistasis, populations of different sizes cannot reach the global fitness peak while evolving 

divergent characters (Fig. 4.3).  

Overall, whereas the simultaneous presence of sign epistasis and differential mutational supply 

is adequate for divergent character evolution in populations adapting to the same environment 
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at different sizes, it cannot lead all populations of different sizes to similar eventual adaptedness 

(Chavhan et al., 2019b).  

Previous studies have argued that populations of vastly different sizes can follow starkly 

different evolutionary trajectories, particularly if the fitness landscape involves sign epistasis 

(Ochs and Desai, 2015; Pál and Papp, 2017; Rozen et al., 2008; Schoustra et al., 2009; Szendro 

et al., 2013b). A recent simulation study has demonstrated that although both small and large 

(but not intermediate-sized) populations evolve increased biological complexity, they do so via 

different evolutionary paths (LaBar and Adami, 2016). Moreover, it has been predicted that the 

probability of crossing a fitness valley depends non-monotonically on populations size, with 

populations of intermediate sizes being the likeliest to be stuck at local fitness peaks (Ochs and 

Desai, 2015). This is expected because small populations can cross fitness valleys by 

sequentially fixing deleterious ‘valley’ mutations, eventually drifting towards the global peak. 

On the other hand, very large populations can undergo ‘stochastic tunnelling,’ in which double 

mutants can take genotypes directly to higher fitness peaks, bypassing the need to cross valleys 

(Ochs and Desai, 2015; Vahdati and Wagner, 2017). Although our study also links population 

size to differences in evolutionary paths, it is different from the above studies on three key 

axes. First, our observations are not explicable by drift—even the smallest populations (102 

individuals) in our principal treatment increased their fitness by 50% (Fig. 4.5). Second, our 

observations cannot be explained by stochastic tunnelling as the probability of a double mutant 

carrying a genotype directly close to the global fitness peak is vanishingly low, making such 

an event virtually impossible even in the largest populations in our study (107). Third, unlike 

any of the above studies, our study deals with populations that evolve a fitness-affecting trait 

in opposite directions while adapting to the same environment, depending on their size. Thus, 

our results not only provide a population genetic explanation for the empirical observations of 

the previous chapter, but also have important implications for understanding how selection 

manifests itself in populations of different sizes, particularly in the presence of sign epistasis.  
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Chapter 5 

Larger Escherichia coli populations  

suffer greater fitness trade-offs  

and undergo more ecological specialization 

 

Highlights 

• We conducted experimental evolution with Escherichia coli populations of two 

different sizes in two distinct nutritionally limited homogenous environments and 

studied fitness trade-offs from three different perspectives. 

• We found that larger populations evolved greater fitness trade-offs, regardless of how 

trade-offs were conceptualized. 

• Although larger populations adapted more to their selection conditions, they also 

became more maladapted to other environments, ultimately paying heavier costs of 

adaptation. 

• To enhance the generalizability of our results, we further investigated the evolution of 

ecological specialization across six different environmental pairs and found that larger 

populations specialized more frequently and evolved consistently steeper reaction 

norms of fitness. 

• This is the first study to demonstrate a relationship between population size and fitness 

trade-offs and the results are important in understanding the population genetics of 

ecological specialization and vulnerability to environmental changes. 

 

Adapted from ‘Chavhan, Y., Malusare, S., and Dey, S. (2019). Larger Escherichia coli 

populations suffer greater fitness trade-offs and undergo more ecological specialization (Under 

review).’  
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5.1. Introduction  

Adaptation of a biological population to a given environment may not concomitantly increase 

its fitness in other environments (Anderson et al., 2013; Bono et al., 2017; Cooper, 2014; 

Kassen, 2002, 2014). In extreme cases, adaptation to one environment can also lead to 

maladaptation to others (Andersson and Hughes, 2010; Bataillon et al., 2011; Cooper and 

Lenski, 2000; Kassen, 2002; Remold, 2012). Such incongruity in fitness changes across 

environments forms the basis of ecological specialization, which happens when the fittest type 

in one environment cannot be the fittest type in another environment (Fry, 1996), and tends to 

restrict the niche breadth of populations to a narrow range of environments (Agrawal et al., 

2010; Futuyma and Moreno, 1988; Levins, 1962, 1968). Studies of ecological specialization 

routinely invoke trade-offs in fitness across environments (Levins, 1962), with the latter 

leading to the intuitive and widespread assumption that the jack-of-all-trades is a master-of-

none (MacArthur, 1984). Such fitness trade-offs and ecological specialization underlie the 

evolution of a wide range of biological properties and processes, including (but not restricted 

to) the composition of ecological communities (Farahpour et al., 2018; Kneitel and Chase, 

2004), host specificity in several systems (Bruns et al., 2014; Joshi and Thompson, 1995; 

Messina and Durham, 2015; Rausher, 1984), virulence (Messenger et al., 1999), resistance to 

a variety of agents like herbivores (Koricheva, 2002), parasites (Boots, 2011), parasitoids 

(Gwynn et al., 2005), antibiotics (Andersson and Hughes, 2010; MacLean et al., 2010), etc.  

The term ‘trade-off’ has been used in a variety of contexts in evolutionary studies (Agrawal et 

al., 2010), with the following three main usages: (1) when a trait that is adaptive in a given 

environment is costly (maladaptive or detrimental to fitness) in others (Bataillon et al., 2011; 

Bell and Reboud, 1997; Kassen, 2014; Rodríguez-Verdugo et al., 2014; Sane et al., 2018); (2) 

unequal adaptation to alternative environments, wherein populations become adapted to all the 

environments under consideration but no single genotype can be the fittest one in all the 

environments (Bell and Reboud, 1997; Kassen, 201a; Remold, 2012); (3) life-history trade-

offs across traits that arise within a single environment due to the systemic properties and 

constraints of organismal features (Knops et al., 2007; Prasad et al., 2001; Stearns, 1989). The 

first two of the above usages pertain to trade-offs in fitness across environments, which can 

directly give rise to ecological specialization. Although the physiological and molecular 

mechanisms of trade-offs and specialization are difficult to decipher in multicellular organisms 

(Agrawal et al., 2010), there is a fairly detailed understanding of such mechanisms in microbes 

(reviewed in Ferenci, 2016). However, the role of a key parameter like population size in 
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determining fitness trade-offs, and the resultant specialization across a pair of environments, 

remains relatively unclear, even in asexual microbes.  

Population size is known to shape a large variety of evolutionary phenomena and properties, 

including rate and extent of adaptation (Chavhan et al., 2019a; Desai and Fisher, 2007; Desai 

et al., 2007; Sniegowski and Gerrish, 2010), repeatability of adaptation (Lachapelle et al., 2015; 

Szendro et al., 2013b), biological complexity (LaBar and Adami, 2016), efficiency of natural 

selection (Chavhan et al., 2019a; Ohta, 1992; Petit and Barbadilla, 2009), etc. Numerous 

theoretical and empirical results have indirectly linked population size with the extent of 

ecological specialization. For example, multiple theoretical and empirical studies have 

established that larger populations generally adapt faster (Chavhan et al., 2019a; Desai and 

Fisher, 2007; Desai et al., 2007; Gerrish and Lenski, 1998; Sniegowski and Gerrish, 2010). 

Moreover, larger populations are expected to adapt primarily via rare large effect beneficial 

mutations while relatively smaller populations adapt slower through common beneficial 

mutations of modest effect sizes (reviewed in Sniegowski and Gerrish (2010)). Interestingly, 

several theoretical (Lande, 1983; Orr and Coyne, 1992; Otto, 2004) and empirical (Griswold, 

2007; Hague et al., 2018) studies suggest that larger mutational benefits also have heavier 

pleiotropic disadvantages. When we combine these two insights, a new testable hypothesis 

emerges: larger asexual populations should show greater specialization by adapting more 

specifically to their environment of selection and should also suffer heavier costs in alternative 

environments. To the best of our knowledge, there are no direct experimental tests of the 

relationships of such specializations and their underlying trade-offs with population size. To 

begin with, as pointed out repeatedly in the literature, experimental evolution studies of fitness 

trade-offs and the resulting specialization have not been conducted at variable population sizes 

(Bataillon, Thomas et al., 2013; Cooper, 2014; Kawecki et al., 2012; Kraemer and Boynton, 

2017). Furthermore, several recent evolution experiments with microbes which have provided 

important insights in this regard have focused on the pleiotropic profiles of individual 

mutations (reviewed in Bono et al. 2017), and not on population-level properties like 

population size. To address this lacuna, in this study, we use experimental evolution with 

Escherichia coli populations of different sizes to test if larger populations evolve bigger fitness 

trade-offs and specialize more across environments.  

Unfortunately, the usage of the term ‘trade-off’ itself has been quite inconsistent across 

evolutionary studies over the last few decades, particularly in the context of ecological 

specialization (Bell and Reboud, 1997; Fry, 1996, 2003; Gwynn et al., 2005; Jessup and 
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Bohannan, 2008; Kassen, 2002, 2014; Lang et al., 2009; Smith-Tsurkan et al., 2010). On the 

one hand, the term ‘trade-off’ has been used interchangeably with ‘cost of adaptation’, which 

represents cases where adaptation to one environment leads to maladaptation in another. Such 

a notion suggests that maladaptation (decrease in fitness below the ancestral level) is a pre-

requisite for trade-offs (Bohannan et al., 2002; Fry, 2003; Kawecki et al., 1997; Smith-Tsurkan 

et al., 2010). On the other hand, some studies explicitly differentiate between trade-offs and 

costs of adaptation, stating that trade-offs (and thus specialization) can occur with or without 

such costs (Bell and Reboud, 1997; Kassen, 2014). Such discrepancy in the usage of the term 

trade-off can often lead to confusions while comparing the conclusions of different studies. For 

example, single-generation studies of trade-offs and ecological specialization routinely make 

conclusions about costs of adaptation while relying almost exclusively on negative correlations 

in fitness across environments (Fry, 2003; Gwynn et al., 2005; Jessup and Bohannan, 2008; 

Joshi and Thompson, 1995; Maharjan et al., 2013). However, single generation studies are not 

only weak in terms of detecting specialization, they can also make misleading claims regarding 

costs of adaptation (Kassen 2002; Fry 2003).  

As shown schematically in Fig. 5.1, negative fitness correlations only imply the intersection of 

competing reaction norms for fitness across the two environments in question. Such 

intersection only means that no genotype has the highest fitness in both the environments. More 

importantly, reaction norms can intersect (and thus fitness correlations can be negative) even 

if the population ends up adapting to both the environments, albeit to different degrees (Fig. 

5.1a) (Fry 1996; Kassen 2014). Thus, although negative correlations always lead to 

specialization across two environments, they can evolve with or without costs of adaptation 

(Bell and Reboud 1997; Kassen 2002, 2014) (Fig. 5.1). Thus, ecological specialization can 

happen even in the absence of costs of adaptation brought about by antagonistic pleiotropy. 

Indeed, magnitude pleiotropy (cases when the fitness effects of a mutation have the same sign 

but different magnitudes across environments) can lead to ecological specialization on its own 

(Remold 2012). Such magnitude pleiotropy has been a very common observation in recent 

studies of mutational fitness effects across environments (Sane et al., 2018; Schick et al., 2015).  
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Fig. 5.1. Ecological specialization can happen with or without costs of adaptation. 

Specialization happens when the fittest genotype in one environment is not the fittest genotype 

in another environment. We consider specialization across two environments (E1 and E2) here. 

The blue populations evolved only in E1 while the red populations evolved only in E2. The 

first column across the three panels (a, b, and c) shows a negative fitness correlation in 

reciprocally selected lines. The second column shows the reaction norms corresponding to the 

correlation in the first column. Following Kassen (2014), the fitness values have been 

normalized by the ancestral fitness (=1) in each environment. (a) Specialization can happen 

even if reciprocally selected lines end up adapting to both the environments. (b) Specialization 

can happen if reciprocally selected lines adapt to their selective conditions but maladapt to the 

alternative environment. (c) Specialization can happen even if reciprocally selected lines end 

up maladapting to both the environments. 
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To avoid semantic ambiguity, we follow Fry (1996) and define specialization across two 

environments as any case where the reaction norms for fitness intersect with each other. 

Evolutionary experiments have conventionally studied fitness trade-offs across environments  

from three major perspectives: (1) as negative correlations in fitness of populations selected 

reciprocally in two environments (Bell and Reboud, 1997; Jessup and Bohannan, 2008; Lee et 

al., 2009); (2) as fitness deficits below the ancestral levels (costs of adaptation) in the 

alternative environment(s) that accompany adaptation to the environment in which evolution 

takes place (Andersson and Hughes, 2010; Bono et al., 2017; Karve et al., 2016; Lee et al., 

2009); (3) as differences in fitness across environmental pairs (Kassen 2014; Schick et al. 

2015). Although these perspectives can potentially be related, they are clearly not equivalent, 

and therefore might lead to different insights about the process of ecological specialization. 

Therefore, we decided to use all three perspectives to investigate how population size affects 

fitness trade-offs and the resulting specialization across environments.  

We propagated replicate E. coli populations of two different sizes in two different nutritionally 

limiting environments (Galactose minimal medium and Thymidine minimal medium). 

Descending from a common ancestor, the experimental populations evolved a strong negative 

correlation between fitness across the two environments. We also found that the larger 

populations paid heavier costs of adaptation. We further assayed the fitness of the evolved 

populations in two more nutritionally limited environments. This enabled us to quantify the 

extent of specialization across six environmental pairs. Remarkably, we found that the larger 

populations specialized more, evolving steeper reaction norms of fitness. To the best of our 

knowledge, this is the first study to directly test the effects of population size on ecological 

specialization brought about by fitness trade-offs.  
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5.2. Materials and Methods 

Experimental Evolution 

We founded 24 populations from a single E. coli MG1655 colony and propagated them for ~ 

480 generations at two different population sizes: Large (L) or Small (S) (defined below). For 

each population size, we had two different kinds of environments: Thymidine (T) or Galactose 

(G) as the sole carbon source in a M9-based minimal medium (for details regarding the 

ancestral strain and media compositions, see Appendix 8). This 2 × 2 design gave rise to four 

population types (TL, TS, GL, and GS) where the first letter represented the only carbon source 

in the selection environment, and the second letter represented the population size. We chose 

thymidine and galactose as the sole carbon sources in the two disparate selection environments 

because these two compounds have very different metabolic pathways in E. coli (Barupal et 

al., 2013; Díaz-Mejía et al., 2009; Frey, 1996; Loh et al., 2006). Each population type had six 

independently evolving replicate populations. We propagated all the 24 populations using the 

standard batch-culture technique at a volume of 300 µl in 96 well plates shaking continuously 

at 150 rpm in an incubator set at 37º C. The large populations (TL and GL) had a periodic 

bottleneck ratio of 1:10 while and the small ones (TS and GS) faced a periodic bottleneck of 

1:104. To ensure that the large and small populations did not spend vastly different amounts of 

time in the stationary-phase, we bottlenecked the large populations every 12 hrs (every 3.3 

generations), and the small one every 48 hrs (every 13.3 generations). Overall, L and S 

corresponded approximately to 9.9 × 107 and 3.9 × 105 respectively in terms of the harmonic 

mean population size (Lenski et al., 1991).  In terms of the measure of population size relevant 

for the extent of adaptation in asexual populations as reported in a recent study (Chavhan et al. 

2019a), L and S corresponded approximately to 9.0 × 106 and 2.2 × 103 respectively. 

 

Quantification of fitness and specialization across environments 

At the end of our evolution experiment, we revived the cryostocks belonging to each 

experimental population in glucose-based M9 minimal medium and allowed it to grow for 24 

hours. Next, we performed automated growth-assays on each of the 24 revived populations 

using a well-plate reader in multiple environments (Synergy HT, BIOTEK ® Winooski, VT, 

USA). Using optical density at 600 nm as the measure of population density, we obtained 

growth readings every 20 minutes for 24 hours. We ensured that the physical conditions during 
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the assays were identical to culture conditions (96 well plates shaking at 150 rpm and ambient 

temperature maintained at 37º C). Using a randomized complete block design (RCBD), we 

conducted the fitness measurements over six different days, assaying one replicate population 

of each type in both the environments on a given day (Milliken and Johnson, 2009). We 

estimated fitness as the maximum growth rate (R), which was computed as the maximum slope 

of the growth curve over a moving window of ten readings (Chavhan et al., 2019a, 2019b, 

Karve et al., 2015, 2016, 2018; Leiby and Marx, 2014).  

We labelled the environment in which selection occurred as ‘home’ and the other (alternative) 

environment(s) as ‘away.’ The presence of the common ancestor as the reference against which 

fitness gains or reductions could be tested allowed us to differentiate between specialization 

and costs of adaptation. As mentioned earlier, we studied trade-offs and the ensuing ecological 

specialization from three major conventional perspectives: 

(1) If fitness trade-offs exist between two environments, reciprocal selection is expected to 

result in strong negative correlations in fitness across them (Kassen 2014). Therefore, we 

determined if relative fitness in Galactose (henceforth “Gal”) had a significant negative 

correlation with relative fitness in Thymidine (henceforth “Thy”). 

(2) We also determined if our experimental populations paid significant costs of adaptation. To 

this end, we first established whether our experimental populations had adapted significantly 

to their home environment (Thy for TL/TS and Gal for GL/GS). Next, we determined if the 

populations had maladapted significantly to their away environment (Gal for TL/TS) and Thy 

for GL/GS). For this, we scaled all fitness values in a given environment by the fitness of the 

ancestor in the corresponding environment, which is equivalent to scaling the ancestral fitness 

value to 1 (Kassen 2014).  We then used single sample t-tests to ascertain if the fitness of a 

given population type differed significantly from the ancestor (i.e., 1). We corrected for the 

inflation of family wise error rate using the Holm-Šidák step-down procedure (Abdi, 2010). 

We also computed Cohen’s d to analyse the statistical significance of these differences in terms 

of effect sizes (Cohen, 1988). We concluded that a population had paid a cost of adaptation 

only if it had adapted significantly to its home environment (i.e., scaled fitness > 1) and 

simultaneously maladapted significantly to its away environment (i.e., scaled fitness < 1).  

We used a mixed model ANOVA with a randomized complete block design (RCBD) to analyse 

if population size and the identity of the home environment interacted with each other 

statistically to shape the fitness in home environment (henceforth Fitnesshome). To this end, we 
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used ‘Population Size’ (two levels: L or S) and ‘Home environment’ (two levels: Gal or Thy) 

as fixed factors crossed with each other, and ‘Day of assay’ (six levels: 1 to 6) as the random 

factor. We also analysed the effect size of the main effects using partial η2, interpreting the 

latter as representing small, medium, or large effect for Partial η2 < 0.06, 0.06 < Partial η2 < 

0.14, 0.14 < Partial η2 respectively (Cohen, 1988).  

Furthermore, we analyzed if the relative extent of fitness loss in the away environment (= 1 - 

Fitnessaway) was significantly different for the large and small populations. To this end, we used 

a mixed-model ANOVA (RCBD) with ‘Population Size’ (two levels: L or S) and ‘Home-Away 

pair’ (two levels: Gal-Thy or Thy-Gal) as fixed factors crossed with each other, and ‘Day of 

assay’ (six levels: 1 to 6) as the random factor. 

(3) We quantified the environmental specificity of adaptation using differences in the relative 

fitness of experimental populations across different home-away environmental pairs. This 

quantity represents the difference in the degrees to which a population adapts to the two 

environments under consideration (Remold 2012; Schick et al. 2015). Such a difference 

between home- and away- relative fitness values (= Fitnesshome – Fitnessaway) can be represented 

graphically as slopes of reaction norms of fitness. Since the quantification of reaction norm 

slopes does not require reciprocal selection, we enhanced the generalizability of our study by 

assaying the fitness of all the 24 evolved populations (TL, TS, GL, and GS) in two more 

nutritionally limited environments (Maltose minimal medium (henceforth “Mal”) and Sorbitol 

minimal medium (henceforth “Sor”)). This allowed us to compare the reaction norm slopes of 

the large and small populations across six home-away environmental pairs (Thy-Gal, Thy-Mal, 

Thy-Sor for TL and TS; Gal-Thy, Gal-Mal, Gal-Sor for GL ad GS).  

We first determined if a population type had specialized significantly across a given home-

away pair. We followed Fry (1996) to identify specialization across a pair of environments as 

any case where the population’s reaction norm intersected with the corresponding ancestral 

reaction norm. This would happen whenever the unambiguous fittest type in one environment 

is not unambiguously the fittest type in the other environment. To identify cases of 

specialization, we first determined if the population type in question had significantly different 

fitness in its home environment as compared to the common ancestor. Next, we determined if 

the population type’s fitness was significantly different from that of the ancestor in the away 

environment. If the population type increased its fitness significantly in both its home and away 

environments, its reaction norm would not intersect with the ancestral norm. This would imply 
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lack of ecological specialization. On the other hand, if the population type’s fitness increased 

significantly in its home environment but failed to do so in its away environment, its reaction 

norm would intersect with the ancestral norm, revealing significant specialization across the 

environmental pair in question (Fig. 5.2). We performed this procedure for each of the four 

population types in our study and used this information to determine if specialization had 

occurred across the six home-away pairs under consideration.  

 

Fig. 5.2. Schematic representation of ecological specialization across two environments. 

All the fitness values are scaled by the ancestral value (=1 (horizontal black line)). The error 

bars represent 95% confidence intervals. Significant ecological specialization occurs when the 

reaction norms of fitness intersect (which happens when the unambiguous fittest type in one 

environment is not the unambiguous fittest type in the other environment).  

 

We also compared the specificity of adaptation (reaction norm slopes) of each of the four 

population types with that of the ancestor across all the home-away pairs under consideration. 

To this end, we conducted single sample t-tests on reaction norm slopes in each pair against 

the ancestral level (ancestral reaction norms have zero slope), followed by correction for 

family-wise error rates using the Holm-Šidák procedure. We further analysed the statistical 

significance of these differences in terms of effect sizes using Cohen’s d. 

To further study how population size affects the specificity of adaptation, we determined if the 

magnitudes of reaction norm slopes were significantly different across the large and small 

populations. To this end, we conducted two separate mixed model ANOVAs (RCBD), one for 

selection in Thy and the other for selection in Gal. The design of these mixed model ANOVAs 

had ‘Population Size’ (two levels: L or S) and ‘Home-Away pair’ (three home-away pairs) as 
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fixed factors crossed with each other, and ‘Day of assay’ (six levels: 1 to 6) as the random 

factor.  
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5.3. Results 

1. Fitness trade-offs as negative correlations: Fitness in Gal was negatively correlated with 

fitness in Thy 

We found a strong negative correlation between fitness in Gal and fitness in Thy (Fig. 5.3; 

Spearman’s ρ = -0.744; P = 3.04 × 10-5). This trade-off was also reflected in terms of 

intersecting reaction norms for fitness across these two environments (Fig. 5.4), which reveals 

that the fittest type in Gal was never the fittest type in Thy. As an intersection of reaction norms 

of fitness across is a critical pre-requisite for ecological specialization (Fry 1996), the trade-off 

in fitness across the two environments (Gal and Thy) implied the occurrence of ecological 

specialization in our experimental populations.  

 

Fig. 5.3. Correlation between relative fitness values in Galactose and Thymidine minimal 

media after evolution in these environments at two different population sizes. The black 

line represents the best linear fit (R² = 0.63); the dotted lines represent ancestral levels of 

fitness; the bidirectional error bars represent 95% confidence intervals.  

 

 

Since trade-offs based on negative fitness correlations (or equivalently, intersecting reaction 

norms) can potentially happen with or without costs of adaptation (Fig. 5.1; Fry 1996, Kassen 

2014), we next determined if our populations had evolved significant costs of adaptation. We 

also examined whether the larger populations had evolved greater costs of adaptation.  
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Fig. 5.4. Reaction norms of relative fitness across Gal and Thy. The dotted line represents 

ancestral levels of fitness. The asterisks represent significant differences with respect to the 

ancestor; the error bars represent SEM (N = 6; some error bars are smaller than their 

corresponding symbols). The crossing of reaction norms implies that the reciprocally selected 

population types had specialized with respect to each other across the two environments.  

 

2. Trade-offs as costs of adaptation: Larger populations paid more costs of adaptation 

Following Kassen (2014), we defined costs of adaptation as the simultaneous occurrence of 

fitness increase (adaptation) in the home environment and fitness decrease in the away 

environment (maladaptation). A comparison of Fig. 5.3 and 5.4 with Fig. 5.1 shows that the 

negative correlation between relative fitness values in Gal and Thy was accompanied by costs 

of adaptation.  

We found a significant main effect of population size on adaptation to the home environment, 

with the large populations showing higher Fitnesshome than the small populations (mixed model 

ANOVA: population size (F1,15 = 10.998, P = 0.005, η2 = 0.423 (large effect)). We also found 

a significant main effect of the home environment (F1,15 = 176.969, P = 1.044 ×10-9, η2 = 0.921 

(large effect)). Importantly, we did not find a significant population size × home environment 

interaction (F1,15 = 0.102, P = 0.753).  
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We found that evolution in Thy resulted in significant costs of adaptation in case of both large 

(TL) and small (TS) populations (Table 5.1), i.e., both TL and TS adapted to Thy but became 

maladapted to Gal (Fig. 5.4; Table 5.1). However, evolution in Gal incurred significant costs 

of adaptation only in case of the large populations (GL); i.e., the GL populations adapted to 

Gal but became maladapted to Thy (Fig. 5.4; Table 5.1). The small populations that evolved in 

Gal (GS) neither adapted significantly to Gal nor became significantly maladapted to Thy (Fig. 

5.4; Table 5.1).  

 

Population type Fitness change in Gal Fitness change in Thy Cost of adaptation 

TL 
Maladaptation 

P = 2.683 × 10-4 

Adaptation 

P = 3.240 × 10-6 
Yes 

TS 
Maladaptation 

P = 0.007 

Adaptation 

P = 7.327 × 10-4 
Yes 

GL 
Adaptation 

P = 0.049 

Maladaptation 

P = 0.013 
Yes 

GS 
Not significant 

P = 0.617 

Not significant 

P = 0.122 
None 

 

Table 5.1. Occurrence of adaptation and maladaptation events in population types selected in 

Gal and Thy separately. The Holm-Sidak corrected P values correspond to single sample t-

tests against the ancestral levels of fitness (= 1). P < 0.05 are shown in boldface. All the cases 

with P < 0.05 were also found to have large effect sizes (See Table A9.1 (Appendix 9)).    

 

Hence, the larger populations paid significant costs of adaptation in both the environments, but 

the smaller ones did so only in one of the two environments under consideration.  

Next, we determined if larger populations also had a higher magnitude of loss in relative fitness 

below the ancestral levels in their away environments. Indeed, we found that the large 

populations lost significantly greater fitness than the small populations in their away 

environments (Fig. 5.5, mixed-model ANOVA: population size (main effect) F1,15 = 9.558, P 

= 0.007, partial η2 = 0.389 (large effect); home environment (main effect) F1,15 = 9.650; P = 

0.007 partial η2 = 0.391 (large effect), population size × home environment (interaction) F1,15 

= 0.002, P = 0.963). Interestingly, this result also implies that the effect of population size on 

Fitnessaway would be the opposite of its effects on Fitnesshome.  
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Overall, larger population adapted more to their home environments while significantly paying 

greater costs of adaptation that made them significantly more maladapted to the away 

environments.  

 

Fig. 5.5. Loss of fitness below the ancestral levels in the away environments. In each case, 

the loss in relative fitness was computed as the difference between the descendant population’s 

relative fitness and the ancestor’s relative fitness. L and S represent large and small 

populations, respectively. The solid lines in the box plots mark the 25th, 50th, and 75th 

percentiles while the whiskers mark the 10th and 90th percentiles; the dashed lines within the 

box plots represent means (N = 6). The dotted line represents no loss from the ancestral fitness 

levels. See the text for details. 

 

 

 

Thus, as compared to the small populations, the large populations lost more fitness in the away 

environments. We note that the magnitudes of such fitness decline cannot reflect the full extent 

of ecological specialization. This is because the former only represent the fitness deficits in the 
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away environments whereas ecological specialization involves a difference between the extents 

of adaptation across the home and away environments. Thus, as the next logical step, we set 

out to measure the extent of specialization in our experimental populations. 

 

3. Fitness trade-offs as extents of ecological specialization: Larger populations specialized 

more 

We used reaction norm slopes as a measure of the specificity of adaptation, computed as the 

difference in the fitness values in the home and the away environments. As described in the 

Materials and Methods section, we assayed the fitness of our population in two more nutrient-

limited environments, which allowed us to compute the reaction norm slope across six different 

environmental pairs (three for Gal-selected populations and three for the Thy-selected 

populations). Moreover, normalization of fitness in any given environment with the 

corresponding ancestral value ensured that the slope of the ancestral reaction norms of relative 

fitness is zero across all environmental pairs (Kassen 2014).  

First, we determined whether our experimental populations had specialized significantly to 

their home environment. Following a previous study (Fry 1996), we identified the evolution of 

specialization as the intersection of the reaction norms of the descendant treatments with that 

of the ancestor. 

On the one hand, the TL and TS populations had significantly greater fitness than the ancestor 

in their home environment (Fig. 5.4). On the other hand, the TL and TS populations had lower 

fitness than the ancestor in all the three away environments under consideration (See Table 

A9.1 (Appendix 9)). This reveals that the average reaction norms of both TL and TS 

populations intersected with the ancestral norms across all the three environmental pairs under 

consideration (T-Gal, Thy-Mal, Thy-Sor). Hence, both the TL and TS populations had 

specialized significantly across all the three home-away pairs.  

The large populations evolved in Gal (GL) had adapted significantly to their home 

environments (Table 5.1; Fig. 5.4). Furthermore, the relative fitness of GL was not significantly 

greater than the ancestor in any of the three away environments (Table A9.1 (Appendix 9)). 

Combining these pieces of information, it is clear that GL populations specialized significantly 

(i.e., the fittest type in home environment was not the unambiguous fittest type in the away 

environment) across all the three home-away pairs (Gal-Thy, Gal-Mal, Gal-Sor). Interestingly, 
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the small populations evolved in Gal (GS) did not have significantly different fitness as 

compared to the ancestor in any of the four environments under consideration (Table A9.1 

(Appendix 9)). This implies that the GS populations did not specialize significantly across any 

of the three home-away pairs under consideration.  

Amongst the Thy-selected populations, we found that both the large (TL) and small (TS) 

populations evolved significantly greater reaction norm slopes than that of the ancestor (i.e., 

reaction norm slope = 0) ((Fig. 5.6, Table A9.2 (Appendix 9)) .  

 

Fig. 5.6. Slopes of reaction norms of the fitness of our experimental populations across six 

environmental pairs. The asterisks represent significant differences (single sample t-tests (P 

< 0.05)) from the ancestral slope (= 0). See the text for details. Refer to Fig. 5.7 for the reaction 

norms across the six environmental pairs. (a) Populations evolved in Thy: reaction norm slopes 

(L > S (P < 10-6)). (b) Populations evolved in Gal: reaction norm slopes (L > S (P < 10-2)). 

Overall, the larger populations had steeper reaction norms. 

  

Amongst the Gal-selected populations, we found that the GL populations had significantly 

steeper reaction norms than the ancestor across all the three home-away pairs under 

consideration (Fig. 5.6; Table A9.2 (Appendix 9)). However, the reaction norm slopes of the 

GS populations were not significantly different from that of the ancestor across any of the three 

home-away pairs (Fig. 5.6; Table A9.2 (Appendix 9)). 
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Fig. 5.7. Reaction norms of fitness across the six home-away environmental pairs used in 

our study. The error bars represent SEM (N = 6). The asterisks represent significantly different 

slope as compared to the ancestral reaction norm for the corresponding home-away pair (Holm-

Šidák corrected P < 0.05). The dotted lines represent ancestral reaction norms (a) Reaction 

norms for populations selected in thymidine (TL (large) and TS (small).  (b)  Reaction norms 

for populations selected in galactose (GL (large) and GS (small).   
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We further determined if larger populations had steeper reaction norms than smaller 

populations over the six different home-away environmental pairs. Indeed, we found a 

significant main effect of population size, with the larger populations evolving steeper reaction 

norms than the smaller ones; importantly, population size and home-away pair did not show 

significant statistical interaction (Fig. 5.6: mixed-model ANOVA for Thy-selected lines: 

Population Size (main effect) F1,25 = 43.664, P = 6.357 × 10-7, partial η2 = 0.636 (large effect); 

Home-Away pair (main effect) F2,25 = 0.566, P = 0.575; Population Size × Home-Away pair 

(interaction) F2,25 = 1.471, P = 0.249; mixed-model ANOVA for Gal-selected lines: Population 

Size (main effect) F1,25 = 8.147, P = 0.009, partial η2 = 0.246 (large effect); Home-Away pair 

(main effect) F2,25 = 0.428, P = 0.657; Population Size × Home-Away pair (interaction) F2,25 = 

1.721, P = 0.199).  

Overall, the large populations not only specialized more frequently (six home-away pairs for 

the large populations versus three for the small ones), they also evolved higher magnitudes of 

environmental specificity. 
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5.4. Discussion 

Fitness trade-offs across environments and the ensuing ecological specialization play key roles 

in understanding a variety of important phenomena, including the maintenance of biodiversity, 

local adaptation, etc. (reviewed in Futuyma and Moreno (1988); Roff and Fairbairn (2007); 

Agrawal et al. (2010)). However, little is known about the relationship between fitness trade-

offs and population size, even in relatively simple organisms like microbes.  

In this study, we conducted experimental evolution to directly test how population size 

influences fitness trade-offs and the resulting ecological specialization. Inconsistencies in the 

usage of terms like trade-offs and costs of adaptation in the evolutionary biology literature 

complicates comparisons across studies. Therefore, here we investigated fitness trade-offs with 

three different (but not necessarily independent) perspectives. Our primary result is that 

regardless of how we chose to visualize trade-off, larger populations suffer more fitness trade-

offs and thus evolve higher extents of ecological specialization. To the best of our knowledge, 

this is the first study to address and experimentally demonstrate this relationship between 

population size and fitness trade-offs.  

The theory of adaptive dynamics in asexual populations predicts that while larger populations 

adapt primarily via rare large effect beneficial mutations, such mutations remain largely 

inaccessible to small populations, which adapt via mutations of relatively smaller effect sizes 

(Chavhan et al., 2019a; Sniegowski and Gerrish, 2010). Moreover, a large body of studies 

suggests that mutational benefits of large sizes lead to heavier disadvantages due to antagonistic 

pleiotropy (Griswold, 2007; Hague et al., 2018; Orr and Coyne, 1992; Otto, 2004). Our result 

that larger population pay higher costs of adaptation can thus be explained by a combination 

of the above two ideas. In other words, the notion that larger populations adapt primarily via 

large effect beneficial mutations which, in turn, are expected to lead to higher pleiotropic 

disadvantages, can potentially explain why larger population paid higher costs of adaptation 

which resulted in steeper reaction norms (Fig. 5.6 and 5.7). Furthermore, since multiple 

beneficial mutations can simultaneously rise to high frequencies in large populations (Desai 

and Fisher 2007; Desai et al. 2007; Sniegowski and Gerrish 2010), our observations can also 

be explained by the pleiotropic effects of a higher number of beneficial mutations in the larger 

populations. We briefly note that although maladaptation to the away environments can  

potentially be caused by the accumulation (via drift in the home environment) of neutral 

mutations that are contextually deleterious in the away environments, it is unlikely to be an 
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explanation of our observations. There are two key reasons behind this assertion. First, a period 

of 480 generations is too small a time window for mutation accumulation to show its 

phenotypic effects in clonally derived bacterial populations with harmonic mean population 

sizes greater than 104 (which happens to be the case here) (Cooper, 2018; Kassen, 2002). 

Second, the effects of accumulation of conditionally neutral mutations are not expected to be 

different across populations of different sizes (Hall and Colegrave, 2008; Kimura, 1983).  

Therefore, if the environment remains constant for long periods, adaptation in larger numbers 

can make populations more specialized to this environment. This relationship between 

population size and ecological specialization has many important implications. Foremost, 

owing to their higher extent of specialization, larger populations can become vulnerable to 

sudden changes in the environment, as predicted by a recent study (Chavhan et al., 2019b). 

Interestingly, if the environment abruptly shifts between two states that show fitness trade-offs 

with each other, then populations with a history of evolution at larger numbers would be at a 

greater disadvantage than historically smaller populations. Microbial populations routinely 

experience such abrupt shifts across environmental states that are known to show fitness trade-

offs with each other. For example, costs of antibiotic resistance are expected to check the spread 

of resistant bacteria if the antibiotics are removed abruptly from the environments (Andersson 

and Hughes 2010). A similar phenomenon has recently been shown to be operating with respect 

to antifungal drugs other than antibiotics (Hill et al., 2015). Moreover, pathogens are also 

expected to experience fitness trade-offs when they migrate across different hosts (Smith-

Tsurkan et al., 2010; Turner and Elena, 2000). 

Our results also predict that in the face of environmental changes, larger populations may not 

adapt better than smaller ones. Pleiotropy has been routinely invoked to explain why evolution 

should mostly proceed via small effect mutations in nature (where the environment is rarely 

constant, both spatially and temporally) (Dillon et al., 2016; Lande, 1983; Orr and Coyne, 1992; 

Tenaillon, 2014). Our results are in accord with this long-held assumption and lead to the 

prediction that environmental fluctuations across states that show fitness trade-offs can 

potentially explain why small populations can be successful in nature. We note that the 

evolution of ecological specialization may sometimes require thousands of generations (Kassen 

2002, 2014; Cooper 2014). It would therefore be particularly interesting to study how 

specialization evolves in populations of different sizes if the environment fluctuates at much 

smaller timescales (tens of generations). Our results can act as stepping-stones for more 
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complex investigations of the links between population size and trade-offs, particularly in 

fluctuating environments.   
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Chapter 6 

An interaction of environmental heterogeneity 

and population size explains the rarity of 

detectable fitness costs 

 

Highlights 

• We conducted experimental evolution with Escherichia coli populations of two 

different sizes in heterogenous and homogenous environments and studied the 

evolution of fitness costs. 

• To the best of our knowledge, this is the first experimental evolution study carried out 

in heterogenous environments at multiple population sizes. 

• We demonstrate a previously unreported interplay of population size and environmental 

heterogeneity that determines the evolutionary emergence (or avoidance) of fitness 

costs. We show that population size has opposite relationships with fitness costs in 

homogenous versus heterogenous environments. 

• Large population size and environmental heterogeneity led to fitness cost avoidance 

when present together but not on their own. This provides a novel explanation for the 

rarity of detectable fitness costs in evolutionary and ecological studies. 

• Interestingly, fitness costs can be avoided even when most mutations show antagonistic 

pleiotropy. 

• Heterogenous environment can make larger populations avoid fitness costs despite 

giving rise to steeper reaction norms of fitness.  

 

‘Chavhan, Y.D., Malusare, S., and Dey, S. (2019). An interaction of environmental 

heterogeneity and population size explains the rarity of detectable fitness costs (Manuscript 

under preparation).’ 
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6.1. Introduction 

Costs of adaptation, also known as ‘fitness costs’ and ‘true trade-offs,’ entail that fitness 

increase in one environment leads to fitness decline (maladaptation) in another, and are a 

fundamental assumption of a large number of models of evolution (Futuyma and Moreno, 

1988; Levins, 1962, 1968; Lynch and Gabriel, 1987; Stearns, 1989). Such fitness costs are the 

basis of ecological specialization, which explain why a given environment favors the survival 

and reproduction of some particular species over others (Fry, 1996; Futuyma and Moreno, 

1988; Kassen, 2002). Such significance of fitness costs in theoretical models and evolutionary 

ecological explanations notwithstanding, a rather large number of evolutionary studies 

spanning diverse taxa have failed to detect them (Coustau et al., 2000; Friman and Buckling, 

2013; Futuyma and Philippi, 1987; Neve et al., 2009; Nidelet and Kaltz, 2007; Rausher, 1984; 

Vasilakis et al., 2009; Via, 1984; Vila-Aiub et al., 2009). Explaining this rarity of detectable 

fitness costs has been a major challenge for evolutionary studies over the last two decades 

(Agrawal et al., 2010; Fry, 1996; Joshi and Thompson, 1995; Remold, 2012).  

Here we investigate the evolutionary emergence and avoidance of fitness costs in asexual 

microbial populations, which have proven to be convenient model systems for experimental 

evolution studies of fitness costs over several hundred generations (Bataillon et al., 2013; Bono 

et al., 2017; Kassen, 2002, 2014; Kawecki et al., 2012). Moreover, unlike multicellular 

organisms, the physiological and molecular bases of fitness costs are fairly well understood in 

asexual microbes (Ferenci, 2016). Numerous microbial experimental evolution studies have 

reported the absence of detectable fitness costs altogether (Bennett and Lenski, 1999; Bono et 

al., 2013; Buckling et al., 2000; Friman and Buckling, 2013; Kassen and Bell, 1998; Sacristán 

et al., 2005; Vasilakis et al., 2009). Moreover, several studies have found such costs in some 

experimental populations but not in others (Bennett and Lenski, 2007; Bono et al., 2015, 2017; 

Buckling et al., 2007; Ciota et al., 2014; Duffy et al., 2006, 2007; Hughes et al., 2007; Jasmin 

and Kassen, 2007a, 2007b; Jasmin and Zeyl, 2013; Ketola and Saarinen, 2015; Lee and Marx, 

2012; Nidelet and Kaltz, 2007; Ostrowski et al., 2005; Roemhild et al., 2015; Satterwhite and 

Cooper, 2015; Velicer and Lenski, 1999; Wenger et al., 2011). An important but trivial 

explanation for the failure to find fitness costs is the absence of any real costs altogether 

(Coustau et al., 2000). Indeed, some recent investigations of single-step mutations in 

Escherichia coli have found mutational pleiotropy to be largely positive (and not antagonistic) 

(Dillon et al., 2016; Sane et al., 2018). Importantly, the extant literature offers three 

conventional explanations as to why fitness costs may exist but remain undetected in empirical 
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studies (Coustau et al., 2000; Velicer and Lenski, 1999): (1) Fitness costs can be detected only 

under certain environmental conditions which the experimental setup fails to provide (Agrawal 

et al., 2010; Coustau et al., 2000; Jaenike, 1990; Kassen, 2014; Strauss et al., 2002). (2) 

Detecting antagonistic pleiotropy (the very foundation of fitness costs) is statistically 

demanding. This is because the significance of adaptive and maladaptive events needs to be 

established simultaneously, and the experiment does not have enough statistical power to do 

so (Ågren et al., 2013; Anderson et al., 2013; Bono et al., 2017; Coustau et al., 2000). (3) The 

emergence of fitness costs is expected to require a threshold amount of time; such costs may 

appear only after several thousand generations of microbial evolution has taken place (Jasmin 

and Kassen, 2007a; Jasmin and Zeyl, 2013; Satterwhite and Cooper, 2015; Schick et al., 2015; 

Velicer and Lenski, 1999). 

A recent meta-analysis of microbial experimental evolution studies provides a new explanation 

for the emergence of fitness costs based on environmental heterogeneity, suggesting that 

environments imposing a single (homogenous) selection pressure frequently lead to fitness 

costs that can be avoided in heterogeneous environments (which fluctuate across multiple 

individual selection pressures) (Bono et al., 2017). These observations can be explained by the 

blindness of selection to fitness changes in environments that are not encountered during 

evolution (Bono et al., 2017; Kassen, 2002, 2014). Antagonistic pleiotropy (wherein a mutation 

that is beneficial in one environment is deleterious in others) can evolve freely if the 

environment does not allow the ensuing costs of adaptation to be expressed. Since selection 

would be blind to the antagonistic pleiotropic effects if the environment does not change, 

fitness costs are more likely to appear in homogeneous environments with a single selection 

pressure as compared to heterogenous environments which fluctuate across multiple selection 

pressures.  

However, in contrast to the above expectation, numerous microbial experimental evolution 

studies have failed to find a significant decrease in the emergence of fitness costs owing to the 

multiplicity of selection pressures in heterogeneous environments (Deardorff et al., 2011; 

Friman and Buckling, 2013; Jasmin and Kassen, 2007b, 2007b; Ketola and Saarinen, 2015; 

Presloid et al., 2008). This suggests that factors other than environmental heterogeneity may 

be important in shaping the evolution of fitness costs.  

In a previous study, we had demonstrated that bacterial population size is an important factor 

that influences how fitness costs evolve in homogeneous environments. Specifically, we had 
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found that larger populations evolving in a homogenous environment containing a single 

carbon source suffer greater fitness costs in alternative carbon sources (Chapter 5). In another 

study, we had demonstrated that when evolution happens in an unchanging environment for a 

few hundred generations, adapting in larger numbers can make bacterial populations more 

susceptible to environmental changes (Chavhan et al., 2019b). The results of these studies 

could be explained with a combination of two notions. First, adaptation in very large 

populations is primarily driven by beneficial mutations of large effect sizes (Chavhan et al., 

2019a; Desai and Fisher, 2007; Sniegowski and Gerrish, 2010). Second, larger beneficial 

mutations are expected to carry heavier disadvantages in alternative environments (Lande, 

1983; Orr and Coyne, 1992).  

Thus, the extant literature suggests that environmental heterogeneity and population size are 

two important factors that can potentially shape the evolution of fitness costs. However, it is 

unknown how these two factors interact with each other to influence the evolution of fitness 

costs. Interestingly, this interaction of environmental heterogeneity and population size is 

expected to act in contrasting ways: (1) If mutational pleiotropy across environmental 

components is largely antagonistic and no mutations can be beneficial in multiple components, 

larger populations would not have a major evolutionary advantage in a heterogeneous 

environment despite having access to relatively more variation. (2) If a large majority of 

mutations show antagonistic pleiotropy but some extremely rare mutations can be 

simultaneously beneficial in multiple environmental components, then larger populations 

(which can access such rare mutations) would adapt better to the heterogenous environment 

than the smaller ones (where such rare mutations would remain inaccessible). To the best of 

our knowledge, no studies in the existing literature have tested these contrasting expectations 

empirically.  

To investigate how environmental heterogeneity interacts with population size, we carried out 

experimental evolution with clonally derived Escherichia coli populations in both 

heterogeneous and homogenous environments at two different population sizes for ~480 

generations (Fig. 6.1). We investigated if population size has similar effects on fitness costs in 

homogeneous and heterogenous environments. We also tested if evolving in a heterogenous 

environment can lead to evolutionary avoidance of fitness costs, regardless of the population 

size. Based on these investigations, we propose a new explanation for the rarity of fitness costs 

evolutionary and ecological studies, which can account for several contrasting observations 

made in the last two decades of microbial experimental evolution.  
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6.2. Materials and Methods 

Experimental evolution 

We carried out experimental evolution with clonally derived Escherichia coli populations in 

five different nutrient limited environmental conditions at two different population sizes (L 

(large) and S (small) (defined below)) for ~480 generations (Fig. 6.1). This gave rise to ten 

different evolutionary lines. Our experimental design had six replicates for each of these ten 

lines—making it a total of 60 independently evolving populations. In our principal 

environmental treatment (heterogenous environment), the sole carbon source fluctuated 

randomly across four different states (thymidine, galactose, sorbitol, and maltose) 

approximately every 13.3 generations. Our study also involved four different homogeneous 

environmental controls, each with an unchanging supply of one of the above four carbon 

sources.  

 

Fig. 6.1. A schematic representation of the evolution experiment used in this study. The text 

on each coloured box denotes the identity of the sole carbon source in its selection environment 

(F denotes fluctuating carbon source (heterogeneous environment). 

 

Using the standard batch culture technique, we let all the 60 populations propagate as 

continuously shaken cultures (150 rpm) in 96 well plates maintained at 37º C. In all the 60 

populations, the culture volume was fixed at 300 µl.  The larger populations faced a periodic 

bottleneck ratio of 1:10 while the smaller ones had a periodic bottleneck of 1:104. To ensure 

that populations of different sizes did not remain in the stationary phase for significantly 

different time periods, we bottlenecked the larger populations every 12 hrs (~3.3 generations), 

and the smaller ones every 48 hrs (~13.3 generations). The harmonic mean population size  was 
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~9.9 × 107 for the larger (L) populations and 3.9 × 105 for the smaller ones (S) (Lenski et al. 

1991).  L and S corresponded approximately to 9.0 × 106 and 2.2 × 103 respectively in terms 

population size relevant for the extent of adaptation in periodically bottlenecked asexual 

systems (Chavhan et al. 2019a) (see Chapter 2).  

 

Quantification of fitness 

We conducted fitness measurements for all the 60 independently evolving populations in all 

four carbon sources (T, G, M, and S) at the end of the evolution experiment (~480 generations).  

To this end, we revived the cryostocks belonging to each of the 60 experimental populations 

in a common nutrient limited environment that was not encountered by any population during 

the ~480 generations of our experiment (glucose based M9 minimal medium) and allowed them 

to grow for 24 hours. Using a well-plate reader (Synergy HT, BIOTEK ® Winooski, VT, USA), 

we then performed automated growth measurements on each of the 60 revived populations in 

all four different minimal media, each based on one of T, G, M, or S. Ensuring that the physical 

conditions during the fitness measurements were the same as the culture conditions (96 well 

plates shaking at 150 rpm and ambient temperature maintained at 37º C), we obtained growth 

readings every 20 minutes for 24 hours. We used optical density at 600 nm as the measure of 

population density. We note that the data pertaining to selection in G and T homogenous 

environments has been reported in a previous study (See Chapter 5).   

Since the total number of growth curves (= 240) was much larger than number of wells in the 

assay plate (= 96), we used a randomized complete block design (RCBD) for growth 

measurements (Milliken and Johnson, 2009). Specifically, we assayed one replicate population 

of each of the ten different evolutionary lines in all four environments on a given day. Since 

there were six replicates for each evolutionary line, we conducted growth measurements over 

six different days. We used the maximum growth rate (R) as the measure of fitness. We 

computed R as the maximum slope of the growth curve over a dynamic window of ten OD 600 

readings (Chavhan et al., 2019a, 2019b, Karve et al., 2015, 2016, 2018; Leiby and Marx, 2014).  

 

Costs of adaptation  

We identified cases of costs of adaptation as cases that showed significant adaptation to one 

environment and simultaneous maladaptation to another. To this end, we carried out single 
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sample t-tests with the ancestral fitness level (scaled to 1) as the reference value. We corrected 

for family-wise error rates using the Holm-Sidak procedure (Abdi, 2010). Cases with fitness > 

1 (corrected P < 0.05) were identified as adaptations; analogously, cases with fitness < 1 

(corrected P < 0.05) were identified as maladaptations.  

At the end of the experiment, we also computed the geometric mean fitness across each of the 

four carbon sources for all the sixty independently evolving populations. We used a mixed 

model ANOVA to compare the geometric mean fitness across the populations evolved in the  

heterogenous environment (FL and FS). In this analysis, the population size (two levels: large 

(L) and small (S)) was taken as the fixed factor and the day of assay as the random factor, with 

each day corresponding to one biological replicate. We also determined the effect size of the 

difference between FL and FS using partial η2, interpreting the latter as showing small, 

medium, or large effect for Partial η2 < 0.06, 0.06 < Partial η2 < 0.14, 0.14 < Partial η2 

respectively (Cohen 1988). 

We also conducted single sample t-tests for comparing the geometric mean fitness of all the 

ten evolutionary lines with that of the ancestor, correcting for family-wise errors using the 

Holm-Sidak procedure.  

We tested if the treatment populations evolved in the heterogenous environment (FL and FS) 

had evolved significantly different geometric mean fitness (over T,G, M, and S) as compared 

to the control populations evolved in homogenous environments. To this end, we conducted a 

mixed model ANOVA with evolutionary line (ten levels) as the fixed factor and day of assay 

(six levels) as the random factor. The we used two post-hoc tests (Dunnett’s procedure), one 

with reference to FL and the other with reference to FS to make pairwise comparisons.  

 

Environmental specificity of adaptation 

We quantified the specificity of adaptation our treatment populations (FL and FS) across the 

four different components of the heterogenous environment. We used the slope of pairwise 

reaction norms as the measure of the environmental specificity of adaptation, with steeper 

reaction norms corresponding to greater difference in adaptedness across environmental 

components, and thus, greater specificity of adaptation. We compared the reaction norm slopes 

of the FL and FS populations across all the six possible environmental pairs. To this end, we 

used a mixed model ANOVA with population size (two levels: large (L) and small (S)) and 
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environmental pair (six levels: T-G, T-M, T-S, G-M, G-S, M-S) as fixed factors crossed with 

each other, and ‘day of measurement’ as the random factor. We also computed partial η2 to 

determine the effect size of the difference between FL and FS.  
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6.3. Results and Discussion 

Large population size and environmental heterogeneity led to fitness cost avoidance when 

present together but not on their own  

We compared the fitness values of ten different evolutionary treatments with the ancestral 

fitness in four distinct environments (single sample t-tests, N = 6). Therefore, there were forty 

possible cases of adaptation or maladaptation. After correcting for family-wise error rates using 

the Holm-Sidak procedure (Abdi, 2010), we found that twenty-one out of these forty possible 

cases showed significant fitness changes as compared to the common ancestor (corrected P < 

0.05; Table A10.1). As described earlier, the simultaneous occurrence of adaptation to one 

carbon source and maladaptation to another was a pre-requisite for the cost of adaptation across 

an environmental pair to be significant. We used this information to analyse the effects of two 

factors that are expected to be important in shaping the evolution of fitness costs in bacterial 

populations, namely population size and environmental heterogeneity. We found that 

population size had opposite effects on costs of adaptation during evolution in homogeneous 

versus heterogeneous environments. 

We found that the large populations that evolved in the heterogeneous environment (FL) 

completely avoided costs of adaptation across all the six environmental pairs under 

consideration (Fig. 6.2; Table 6.1). These populations adapted simultaneously to both 

thymidine and galactose and did not show a change in fitness (vis-à-vis the common ancestor) 

in sorbitol and maltose (Fig. 6.2; Table A10.1 (Appendix 10)). On the other hand, the small 

(FS) populations suffered costs of adaptation across three out of the six environmental pairs 

while showing simultaneous maladaptation in the other three (Fig. 6.2; Table 6.1). The FS 

populations adapted only to thymidine, becoming maladapted to the other three carbon sources 

(galactose, sorbitol, and maltose) (Fig. 6.2). To summarize, when evolved in the heterogeneous 

(randomly fluctuating) environment, the large populations avoided costs of adaptation in all 

cases, but the small populations failed to do so.  

Interestingly, the above pattern of costs of adaptation reversed completely when we 

investigated evolution in homogeneous (single carbon source) environments. Specifically, in 

homogeneous environments, the large populations paid heavier costs of adaptation than the 

small populations (Table 6.2; the results pertaining to selection in homogeneous thymidine and 

galactose environments have been previously reported in Chapter 5). 
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Fig. 6.2. The effects of population size (L (large) versus S (small)) on evolution in 

heterogeneous and homogeneous environments. T, G, M, and S represent thymidine, galactose, 

maltose, and sorbitol, respectively; NC = no costs; CoA = costs of adaptation; MBE = 

maladaptation to both environments. The solid line represents the ancestral level of the ordinate 

in each graph. The asterisks represent P < 0.05 (single-sample t-tests against the ancestral 

level). (a) Reaction norms of fitness of large (FL) and small (FS) populations evolved in 

heterogeneous environments across the environmental states faced during evolution. The error 

bars represent SEM. (b) Geometric mean fitness (across the four carbon sources (T, G, M, and 

S)) of populations evolved in the heterogeneous environment. FL > FS (P < 0.01) (c) 

Arithmetic mean fitness (across T, G, M, and S) of populations evolved in the heterogeneous 

environment. FL > FS (P < 0.05)  (d) Geometric mean fitness (across T, G, M, and S) of 

populations evolved in homogeneous environments. See the text for details.  
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                        Evolution in heterogeneous environment 

Case(s) with costs of adaptation Case(s) with simultaneous adaptation 

Population 

size 
Environmental pair(s) 

Population 

size 
Environmental pair(s) 

Small T (adaptation) - G (maladaptation) 

Large T (adaptation) – G (adaptation) Small T (adaptation) - S (maladaptation) 

Small T (adaptation) - M (maladaptation) 

 

Table 6.1. The evolutionary emergence or avoidance of costs of adaptation in populations 

evolved in the heterogeneous environment. T, G, M, and S represent thymidine, galactose, 

maltose, and sorbitol, respectively. In the heterogeneous environment, the larger (FL) 

populations avoided all the costs suffered by the smaller ones (FS). Only the FL populations 

could adapt simultaneously to multiple carbon sources. See the text and Table A10.1 for details.  

 

 

        Evolution in homogeneous (single carbon source) environments 

Case(s) with costs of adaptation 
Case(s) with simultaneous 

adaptation 

Selection 

environment 

Population 

size 
Environmental pair(s) 

None 

G Large G (adaptation) - T (maladaptation) 

T Large T (adaptation) - G (maladaptation)† 

T Large T (adaptation) - S (maladaptation)† 

T Large T (adaptation) - M (maladaptation)† 

T Small T (adaptation) - G (maladaptation) 

T Small T (adaptation) - Sor (maladaptation) 

T Small T (adaptation) - M (maladaptation) 

 

Table 6.2. The evolutionary emergence or avoidance of costs of adaptation in populations 

evolved in the homogeneous environments. T, G, M, and Sor represent thymidine, galactose, 

maltose, and sorbitol, respectively. In homogeneous environments, the larger populations 

suffered greater costs  than the smaller ones. See the text and Table A10.1 for details. †Across 

the T - M, T - G, and T - S pairs, the costs suffered by the larger populations were greater than 

those suffered by the smaller populations. None of the populations evolved in homogeneous 

environments could adapt simultaneously to multiple carbon sources, regardless of their 

population size. See the text and Table A10.1 for details. 
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It has been previously reported that when evolved in homogeneous (single carbon source) 

environments, adaptation to thymidine was accompanied by maladaptation to galactose, and 

vice-versa (Chapter 5). Here we find that when populations faced the heterogeneous 

environment with fluctuating carbon sources, the small populations (FS) indeed suffered from 

the thymidine-galactose costs (adapting to thymidine but maladapting to galactose) (Fig. 6.2), 

similar to the populations evolved in homogeneous environments containing either galactose 

or thymidine. Surprisingly, the large populations evolved in the heterogeneous environment 

(FL) completely bypassed the thymidine-galactose trade-off, adapting simultaneously to both 

the carbon sources, thereby avoiding the costs of adaptation across this environmental pair (Fig. 

6.2a, Table 6.1).  

Thus, neither population size nor environmental heterogeneity could sufficiently explain the 

emergence (or avoidance) of costs of adaptation on their own (Tables 6.1 and 6.2). Instead, an 

interplay of these two factors shaped how fitness costs evolved in our experiment. Overall, 

costs of adaptation were avoided only when populations evolved in heterogeneous 

environments at large population size (the FL populations (Table 6.1; Fig. 6.2)).  

Interestingly, the evolutionary success in fluctuating environments is reflected by the geometric 

mean fitness across the states about which the environment fluctuates (and not necessarily the 

arithmetic mean fitness) (Kassen, 2014; Orr, 2007). Therefore, we compared the geometric 

mean fitness of the FL and FS populations using a mixed model ANOVA (see Materials and 

Methods). We found that the FL populations had significantly higher geometric mean fitness 

than the FS populations (Fig. 6.2b; mixed-model ANOVA: population size (main effect): F1, 5 

= 18.002; P = 0.008; partial η2 =  0.783 (large effect)). Thus, the large (FL) populations adapted 

better than the small (FS) populations to the heterogeneous environment.  

We also found that among the populations evolved in the heterogeneous environment (FL and 

FS), only the large populations (FL) could significantly enhance their geometric mean fitness 

with respect to the common ancestor (Fig. 6.2b; Table A10.2 (Appendix 2)). Despite showing 

significant fitness changes in  thymidine (adaptation) and galactose (maladaptation), the FS 

populations did not have significantly different geometric mean fitness as compared to the 

common ancestor (Fig. 6.2b; Table A10.2). Interestingly, we also found that the FL populations 

had higher arithmetic mean fitness than the FS populations across the four environments (Fig. 

6.2c). This observation can be explained by the avoidance of fitness costs by the FL 

populations. Adaptation to  homogeneous environments is not expected to entail increased 
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geometric mean fitness over several (unexposed) environments. Indeed, we found that the 

geometric mean fitness over the four carbon sources did not increase significantly as compared 

to the ancestral level in any of the homogeneous environment treatments, regardless of the 

population size (Fig. 6.2d; Table A10.2).  

Although the FL populations had a much larger geometric mean fitness than all the 

homogeneous environment treatments (Table A10.3 (Appendix 10)), surprisingly, the FS 

populations  did not have significantly different geometric mean fitness as compared to seven 

out of the eight homogeneous environment treatments (Table A10.3). This shows that, despite 

evolving in the heterogeneous environment for several hundred generations, the FS populations 

did not become fitter in the fluctuating environmental as compared to most of our homogeneous 

environment treatments. This highlights the role played by population size in shaping fitness 

relationships across the components of heterogeneous environments. The mere presence of 

multiple selective pressures in a heterogeneous environment was not enough to prevent costs 

of adaptation. which ultimately precluded increase in geometric mean fitness in small 

populations. 

 

Conventional explanations fail to account for the avoidance of fitness costs in our 

experiments 

None of the conventional explanations for the rarity of detectable fitness costs could account 

for our observations (Coustau et al., 2000; Velicer and Lenski, 1999). Specifically, the inability 

of our experimental setup to provide the relevant conditions for costs to be expressed (Coustau 

et al., 2000), substantial statistical demands of establishing antagonistic pleiotropy (Ågren et 

al., 2013; Anderson et al., 2013; Bono et al., 2017; Coustau et al., 2000), and the inadequacy 

of the duration of our evolution experiment (Jasmin and Kassen, 2007a; Satterwhite and 

Cooper, 2015; Schick et al., 2015; Velicer and Lenski, 1999) could not explain why the FL 

populations avoided fitness costs suffered by the other evolutionary lines. Foremost, several 

environmental pairs in our study showed real costs of adaptation and we could detect them 

despite the substantial statistical demands imposed by antagonistic pleiotropy. Moreover, apart 

from the intentional differences in terms of population size and carbon source composition 

(which were integral to our experimental design), our experimental treatments had faced 

identical physical conditions, both during the ~ 480 generations of evolution and during the 

fitness assays. Lastly, ~ 480 generations were enough for large fitness costs to emerge in our 
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experiments, even in heterogeneous environments. Therefore, none of the above conventional 

explanations can account for the observation that the FL populations avoided all the costs that 

were detected in the other experimental treatments in our study (Table 6.1).  

 

Fitness costs can be avoided even when most mutations show antagonistic pleiotropy  

Our experimental design allowed us to analyse how population size and environmental 

heterogeneity interacted with each other to influence the emergence (or avoidance) of fitness 

costs. The positive relationship between population size and fitness costs observed in 

homogeneous environments can be readily explained using antagonistic pleiotropy (Cohan et 

al., 1994; Cooper, 2014; Cooper and Lenski, 2000; Holt, 1996; Rose and Charlesworth, 1980). 

Since these populations faced only one carbon source throughout the experiment, their 

evolution was blind to fitness changes in other carbon sources. The pleiotropic disadvantages 

of beneficial mutations are generally expected to be correlated with their direct effects 

(Chavhan et al., 2019b; Lande, 1983; Orr and Coyne, 1992; Otto, 2004). Since the latter are 

generally greater in larger asexual populations (Chavhan et al., 2019a, 2019b; Desai and Fisher, 

2007; Desai et al., 2007; Sniegowski and Gerrish, 2010), adapting to single carbon source 

environments in larger numbers should lead to greater costs of adaptation, as observed in our 

study (Table 6.2).  

We now provide a putative explanation to why the FL populations avoided costs of adaptation, 

but the FS populations could not do so. Although the environment of the F populations 

contained only a single carbon source at any given point of time, the identity of this carbon 

source fluctuated randomly over four states every 13.3 generations. Therefore, selection was 

not blind to the pleiotropic fitness effects of mutations across the four constituent carbon 

sources for the F populations. Imagine a pair of environments (A and B) that show a negative 

correlation in terms of the fitness effects of mutations, as shown schematically in Fig. 6.3. Here 

A and B can be taken as proxies for galactose and thymidine, respectively, because fitness 

values in these carbon sources are known to be negatively correlated (Chapter 5). Our 

explanation here is based on two environments for the sake of simplicity and can easily be 

extended to multiple environments.  

Fig. 6.3 shows two different scenarios where the distributions of fitness effects (DFEs) have 

identical shapes but different locations on the fitness plane. Both DFEs agree with common 

empirical observations that deleterious mutations are much more frequent than beneficial ones 



 

141 
 

and beneficial mutations with greater effect sizes are rarer (Eyre-Walker and Keightley, 2007; 

Kassen and Bataillon, 2006; Neher, 2013). If populations of different sizes adapt to a 

homogeneous environment with a single selection pressure (say environment B), both DFEs 

would lead to greater fitness costs in the larger populations, thereby explaining our 

observations for single carbon source populations (Table 6.1). However, if populations 

experience selection in both the environments (A and B) during evolution, the DFE of Fig. 6.3a 

would never lead to simultaneous adaptation in both the environments. This is because 

adaptation along any one environmental axis would necessarily lead to maladaptation along 

the other one, and there are no mutations in Fig. 6.3a that can simultaneously increase the 

fitness along both axes. Thus, the DFE of Fig. 6.3a can explain our results pertaining to 

homogeneous environments in our study but not of the F populations which evolved in the 

heterogeneous (fluctuating) environment.  

Contrastingly, the DFE of Fig. 6.3b allows a small fraction of mutations to be beneficial in both 

the environments. Since mutations that are beneficial in a single environment are known to be 

rare, mutations that are simultaneously beneficial in two environments are expected to be even 

rarer. Small populations are unlikely to stumble upon such rare doubly beneficial mutations. 

However, very large populations can readily do so. Thus, the DFE of Fig. 6.3b predicts that 

very large populations are likely to adapt simultaneously to both environments, but very small 

populations are unlikely to do so. This can explain why the FL populations could adapt 

simultaneously to both thymidine and galactose, but the FS populations could not. Note that 

the schematic DFEs of Fig. 6.3 are asymmetric with respect to the two environmental axes 

(many more beneficial mutations are available in environment B than in environment A). In 

other words, the scope of adaptation in environment B is greater than that in environment A. 

This asymmetry is in close agreement with our observation that the scope of adaptation in 

thymidine was much greater than that in galactose (Table A10.1; also see Chapter 5). Indeed, 

we found that the GS populations could not adapt significantly to galactose, but the TS 

populations increased their fitness in thymidine by more than 1.5-fold (Table A10.1). This 

shows that the size of our small-population treatments was sufficient to adapt via beneficial 

mutations with respect to thymidine. This can explain why the FS populations adapted to 

thymidine even if they were not large enough to adapt via doubly beneficial mutations (Fig. 

6.2, Table 6.1). Such singly beneficial mutations in thymidine are expected to lead to fitness 

costs  
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Fig. 6.3. A schematic representation of hypothetical bivariate frequency distributions of fitness 

effects (DFE) of mutations across two different environments. The color intensity correlates 

with mutational frequency. (a) A DFE where fitness in environment A is negatively correlated 

with fitness in environment B and no mutations are beneficial in both the environments. (b) A 

DFE where fitness values in environments A and B are negatively correlated, but some 

mutations are beneficial in both the environments. (c) and (d) Predictions regarding the effects 

of population size on costs of adaptation in homogeneous and heterogeneous environments 

based on the DFEs of (a) and (b), respectively.  

 

in galactose (see Chapter 5). In line with this expectation, the FS populations became 

significantly maladapted to galactose despite the latter being one of the four component 

selection pressures faced by these populations (Fig. 6.2; Table 6.1).  
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Thus, even when most (but not all) mutations exhibit antagonistic pleiotropy across two 

environments, large asexual populations can adapt simultaneously to them and avoid fitness 

costs. 

 

Larger populations evolved steeper reaction norms of fitness even when they avoided fitness 

costs 

It has been reported earlier that in homogeneous environments with a single carbon source, 

larger E. coli populations showed more specificity of adaptation across environments (where 

the latter was measured as the steepness of reaction norms across environmental pairs) (Chapter 

5). This result derives from the expectation that adaptation of larger populations to 

homogeneous environments occurs primarily via mutations that not only carry greater direct 

benefits but also show stronger pleiotropic effects (Chavhan et al., 2019b; Lande, 1983; Orr 

and Coyne, 1992; Otto, 2004). However, this does not imply that larger populations evolving 

in heterogeneous environments would also show steeper reaction norms across the 

environmental components. Since selection is not blind to the pleiotropic disadvantages across 

the components of a heterogeneous environment, the latter is expected to favor generalist 

mutations (Kassen, 2002, 2014). As described above, larger populations suffered greater fitness 

costs than smaller populations when evolved in homogeneous environments. However, in 

heterogeneous environments, smaller populations evolved substantial fitness costs while the 

larger populations avoided them altogether. Along similar lines, the steepness of reaction 

norms of fitness can also have opposite relationships with population size in homogeneous and 

heterogeneous environments, with larger populations evolving steeper norms in homogeneous 

environments but flatter ones in heterogeneous environments. We tested this hypothesis by 

measuring the slopes of reaction norms of the populations evolved in fluctuating environments 

(FL and FS) across all the six possible environmental pairs and determined if the large 

populations (FL) had significantly different slopes than the small populations (FS). 

Surprisingly, we found that FL populations evolved steeper reaction norms than the FS 

populations (Fig. 6.4, mixed model ANOVA: population size (main effect): F1,55 = 22.959; P 

= 1.295 × 10-5; partial η2 =  0.294 (large effect)). We also found a significant main effect of 

environmental pairs, which is evident from Fig. 6.2 (F1,55 = 35.119; P = 5.55 × 10-16; partial η2 

= 0.761 (large effect)). However, the interaction of the two main effects (population size and 

environmental pairs) was not significant (P = 0.195). Combining this  observation with 
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previously reported results (Chapter 5), we find that the relationship between population size 

and reaction norm slopes applies was robust to changes in environmental heterogeneity (Table 

6.3). This contrasts with the relationship of population size with costs of adaptation, which is 

not only dependent in the environmental heterogeneity, but also shows opposite trends in 

homogeneous and heterogeneous environments.    

 

Fig. 6.4. The specificity of adaptation across environmental pairs as reflected by the slopes of 

pairwise reaction norms belonging to large (FL) and small (FS) populations evolved in the 

heterogeneous environment. The solid lines in the box plots mark the 25th, 50th, and 75th 

percentiles while the whiskers mark the 10th and 90th percentiles; the dashed lines within the 

box plots represent means (N = 6). The FL populations had steeper reaction norms than the FS 

populations. 

 

Interestingly, the effects of population size on the specificity of adaptation (measured as 

reaction norm slopes) are in stark contrast with contrast with its effects on costs of adaptation. 

As depicted in Table 6.3, the (FS) populations suffered heavier costs of adaptation as compared 

to the large populations which faced fluctuating environment (FL). Surprisingly, the FL 

populations escaped the costs of adaptation across all the six environmental pairs despite 

consistently evolving steeper reaction norms across them (Table 6.3). On the one hand, higher 

specificity of adaptation accompanies greater costs of adaptation in homogeneous 

environments. On the other hand, when bacterial populations adapt in a heterogeneous 
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environment, higher specificity of adaptation can accompany simultaneous adaptation to 

multiple environmental components, thereby preventing costs of adaptation. 

 

 Heterogeneous 
environment 

Homogeneous 
environment 

 
Large 

populations 

Small 

populations 

Large 

populations 

Small 

populations 

Reaction norm slope High Low High Low 

Costs of adaptation None High High Low 

 

Table 6.3. A summary of our experimental observations depicting two key results: First, 

population size has opposite relationship with costs of adaptation in heterogeneous versus 

homogeneous environments. Second, population size has similar relationship with reaction 

norm slopes in heterogeneous versus homogeneous environments. 

 

Implications 

In this study, we offer a novel explanation for an important evolutionary conundrum, the rarity 

of detectable fitness costs in empirical studies. Specifically, we demonstrate a previously 

unreported interaction of population size and environmental heterogeneity that determines the 

evolutionary emergence (or avoidance) of fitness costs (Table 6.1 and 6.2). These results can 

potentially explain how evolving populations can escape fitness costs despite substantial 

antagonistic pleiotropy across environmental states. Our study shows that a combination of two 

conditions, namely large population size and heterogeneous environment, can avoid all fitness 

costs that can potentially evolve when these conditions are not present simultaneously. 

The environments of most natural populations of asexual microbes are known to be 

heterogeneous (Angel et al., 2010; Freedman and Zak, 2015; Green and Bohannan, 2006; 

Morin and McGrady‐Steed, 2004; Muscarella et al., 2019; Schaum et al., 2016; Yan et al., 

2017). Moreover, such natural asexual populations are also known to have extremely large 

sizes (Tenaillon et al., 2010; Torsvik et al., 2002; Walter and Ley, 2011; Whitman et al., 1998). 

Our results suggest that if the asexual population under consideration has a history of evolving 

in heterogeneous environments in large numbers, it is expected to have reached its current state 
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after having avoided fitness costs during its past evolution. Therefore, if a sample from such a 

population is now employed to analyse fitness correlations in a single-generation study, such 

correlations may not be negative. This explains why single-generation studies (which are based 

on standing genetic variation) can reveal non-negative fitness correlations even if most de novo 

mutations exhibit antagonistic pleiotropy across environments.  

Our observations also suggest that a combination of large population size and homogeneous 

environment is highly likely to give rise to fitness costs. This can explain why a considerable 

number of microbial experimental evolution studies that make clonally derived asexual 

populations evolve in homogeneous environments at effective sizes exceeding tens of millions 

of individuals have successfully revealed fitness costs (Bedhomme et al., 2012; Cooper and 

Lenski, 2000; Cooper et al., 2001; Ensminger et al., 2012; Hall and Colegrave, 2008; Kassen 

and Bell, 1998; Kubinak and Potts, 2013; Leiby and Marx, 2014; Nilsson et al., 2004; Philippe 

et al., 2009; Presloid et al., 2008; Vasilakis et al., 2009).  

The results of our study have important practical implications for understanding phenomena 

where the environment fluctuates randomly across states that exhibit fitness costs. We 

emphasize that our experiment can be treated as a case-study of how population size and 

environmental fluctuations interact with each other to shape fitness costs in asexual microbes. 

This is particularly true because the heterogenous environment used in our study fluctuated 

across two states (galactose and thymidine) that are known to show reciprocal fitness trade-

offs with each other when they are present as the sole source of carbon in a homogenous 

environment (Chapter 5; Table 6.2). Furthermore, although the environments used in our 

experimental setup were nutritionally challenging minimal media, the explanation of our 

observations applies to the general notion of fitness costs across multiple environments in 

asexual microbial populations.  

Our results can have particularly important implications for understanding the rampant 

evolution and spread of antibiotic resistance, which has direct practical value.  Mutations that 

confer resistance to antibiotics have been routinely shown to bear fitness costs in drug-free 

conditions (Andersson and Hughes, 2010; Angst and Hall, 2013; Gifford and MacLean, 2013; 

MacLean et al., 2010; Paulander et al., 2009; Song et al., 2014; Vogwill and MacLean, 2015). 

Interestingly, resistant microbes mostly evolve in a heterogeneous environment that fluctuates 

randomly across antibiotic-laden and antibiotic-free conditions (Baquero et al., 1998). Our 

results predict that small populations evolving in heterogeneous environments suffer heavy 
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fitness costs while large populations are likely to avoid them altogether (Fig. 6.2). Thus, even 

if most antibiotic resistance mutations carry a cost in drug-free conditions, large microbial 

population sizes stemming from lack of sanitary conditions and proper medical waste-disposal 

(Cantón et al., 2013; Kümmerer, 2003; Okeke et al., 1999) could themselves lead to vigorous 

spread of cost-free resistance.  
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Chapter 7 

Conclusions, implications, and future avenues 
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Evolutionary theory predicts that larger populations typically adapt faster. Experimental 

evolution with asexual microbes is an important approach for testing such theoretical 

predictions by studying the process of evolution as it unfolds under a set of carefully regulated 

conditions (Bataillon et al., 2013; Cvijović et al., 2018; Kassen, 2002, 2014; Kawecki et al., 

2012). In most of these studies, the population size does not remain constant over successive 

generations (reviewed in Cvijović et al., 2018; Kawecki et al., 2012). Instead, most 

experimental populations of asexual microbes are cultivated under resource limited conditions, 

and their growth is punctuated by severe reductions in the number of individuals (bottlenecks), 

which happen periodically every few generations (LeClair and Wahl, 2018; Lenski et al., 1991; 

Wahl and Gerrish, 2001; Wahl et al., 2002). Almost all experimental evolution studies dealing 

with such periodically bottlenecked asexual populations investigate the changes in average 

population-wide fitness assuming that for any given number of individuals in the periodic 

bottleneck (N0) and number of generations between successive bottlenecks (g), the harmonic 

mean size (HM = N0g) should predict the population’s adaptive dynamics (de Visser and 

Rozen, 2005; Desai et al., 2007; Lachapelle et al., 2015; Lenski et al., 1991; Samani and Bell, 

2010; Vogwill et al., 2016). Unfortunately, the validity of this widespread assumption had 

never been subjected to theoretical or empirical tests.  

In Chapter 2, we used a combination of evolution experiments with Escherichia coli 

populations and individual-based simulations to test the above (widely assumed)  relationship 

between average fitness and the conventional measure of population size (HM). We found that 

HM fails to predict or explain the trajectories of average fitness in asexual populations. We 

also showed that our results are valid over the timescales employed in almost all evolution 

experiments till date. Our observations call for a re-evaluation of the effects of population size 

in explaining the observations of a large number of empirical studies and can potentially 

account for the concerns regarding the adaptive relevance of HM (Raynes et al., 2014).  

We further investigated why HM fails to predict average fitness and found that while the latter 

varies positively with N0, it varies negatively with g. Therefore, any measure of population size 

that is an increasing function of both N0 and g would fail to predict the average fitness. Our 

study also established that periodic bottlenecks play a dual role in terms of influencing variation 

in asexual populations.  On the one hand, for a given size of the periodic bottleneck (N0), 

harsher periodic bottleneck ratios (higher g) lead to increased variation, thereby allowing 

populations to explore rare large-effect beneficial mutations. On the other hand, higher g also 

reduces the efficacy with which selection enriches beneficial mutations and removes 
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deleterious ones. Overall, higher g impedes adaptation. We show that the inability of the 

conventional measure to incorporate this dual aspect of periodic bottleneck leads to an 

overestimation of the rate of production of variation that can successfully survive sampling. 

Thus, Chapter 2 calls for an updated view of the effects of periodic population bottlenecks on 

adaptation.  

We used the above insights to show that not only does N0/g predict average fitness much better 

than N0g, but populations with identical N0/g also have similar fitness trajectories. Thus, N0g 

can be a potential measure of population size that can predict average fitness in asexual 

systems. This measure should aid not only in designing better evolution experiments, but also 

in comparisons of adaptive dynamics across disparate studies in similar environmental 

contexts. 

We emphasize that N0/g is an empirically (and not analytically) derived quantity that is 

congruent with our finding that the average fitness varies positively with N0 but negatively with 

g. It is possible that other theoretical expressions that also capture these relationships are better 

than N0/g at predicting the trajectories of average fitness. A detailed theoretical study that 

derives the appropriate measure of population size incorporating the above findings is an 

important future direction in this context. 

We also note that the conventional measure of population size (HM = N0g) can still explain the  

trends of average fitness in several empirical studies where the final size just prior to the 

bottleneck (Nf) is held constant (Desai et al., 2007; Raynes et al., 2014; Vogwill et al., 2016). 

This is because both N0g and N0/g would predict the same trends for average fitness over the 

empirically relevant ranges of N0 and g, if the populations being compared have similar Nf. 

Importantly, this congruence will break down and HM would fail to predict average fitness if 

Nf varies across experimental treatments.  

Our results also show that carrying capacity (K) can evolve rapidly in a few hundred 

generations, which calls for a re-evaluation of theoretical models that treat Nf as a constant. 

This could be particularly important for understanding adaptive dynamics because an increased 

K can itself accelerate adaptation in such systems via a feedback loop. Specifically, an increase 

in K leads to increased Nf, which itself leads to increased N0 (as g typically remains constant 

within a given experiment). Since the average fitness varies positively with N0, an increase in 

the latter would also lead to an increase in the former. Finally, since our results apply 

generically to periodically bottlenecked asexual systems, they are also relevant for 
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understanding practically important phenomena like the evolution of drug-resistance in 

pathogens (whose population growth within a single host is punctuated by bottlenecks during 

host-to-host transfers).  

In Chapter 3, we followed up on the evolution experiment of Chapter 2 to investigate the effects 

of historical population size on the vulnerability of asexual populations to sudden changes in 

the environment. We found that when the selection environment consisted of sub-lethal 

concentrations of three antibiotics, the efflux activity decayed in the larger populations but 

enhanced in the smaller ones. It should be noted here that the generic ability to actively efflux 

xenobiotic chemicals is not only expected to be a major determinant of fitness in the presence 

of antibiotics (Kumar & Schweizer 2005, but is also a generic mechanism for combating 

stressful chemicals like heavy metals (Nies, 2003; Poole, 2005), bile salts (Thanassi et al., 

1997), organic solvents (Fernandes et al., 2003), intercalating mutagens (Ma et al., 1993; 

Nishino et al., 2009), etc. We further found that the efflux activity was not only negatively 

correlated with population size, it also showed a strong negative correlation with the speed of 

adaptation. Our experimental design allowed us to attribute the differences in the evolved 

efflux activities to the population sizes of the treatments. We further established that the 

evolution of efflux activity was driven largely by pleiotropic response to selection and not by 

random accumulation of conditionally neutral mutations via genetic drift. The decay of efflux 

activity in the larger populations is expected to render them less fit in a variety of stressful 

environments that had not been encountered earlier. This was confirmed by the fitness trends 

in four different alternative stressful environments.  

Chapter 3 presents the first study to empirically demonstrate a link between historic population 

size and the vulnerability to sudden environmental changes. We found that efficient natural 

selection in an unchanging environment could make large populations undergo highly focused 

adaptation that can, in turn, render them vulnerable to sudden changes in their environments. 

This counterintuitive insight finds an analogue in a recent study documenting the rise and fall 

of passenger pigeon populations (Murray et al., 2017). Using DNA sequence data, it was shown 

that the passenger pigeon populations in North America were so large that natural selection 

resulted in highly reduced diversity at important loci. Such reduction in diversity might have 

made these populations highly vulnerable to the sudden environmental change brought upon 

by the industrial revolution, which could have ultimately contributed to their extinction. While 

this study pertains to a completely different model system as compared to our experiments, the 

congruence between its observations and our experimental results lend credence to the idea 
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that adapting in larger numbers can potentially increase the susceptibility to environmental 

changes.   

Chapter 3 also uncovers a novel trade-off between maximizing the speed of adaptation and 

decreasing vulnerability to environmental changes, which should be pertinent to asexual 

populations of microbes that face periodic bottlenecks (e.g., host-to-host transfer of gut 

microbiota or pathogens), particularly if their environment changes across states that show 

fitness trade-offs (e.g., costs of drug resistance in drug-free conditions (Andersson and Hughes, 

2010)). Specifically, larger asexual populations can face severe fitness declines if their 

environment changes across such states. 

The results of Chapter 3 also have important implications for understanding the evolutionary 

fates of putatively important biological characters. Conventionally, the decay or enhancement 

of a biological character has been attributed to the environment in which evolution occurs. For 

example, the evolutionary decay of eyes in multiple cave-dwelling animals has been attributed 

to dark environments (Jeffery, 2005; Protas et al., 2011). Our study presents the first 

demonstration that selection can make a biological character decay or enhance rapidly over 

evolutionary time in the same environment. This result calls for a re-evaluation of the 

importance conventionally given to the environmental conditions while making a posteriori 

claims with respect to character divergence across disparate populations. Specifically, our 

study demonstrates that differences in environmental conditions (and hence the direction of 

selection) need not always be invoked to explain such character divergence; instead differences 

in population size can themselves lead to the divergence of a putatively important biological 

character in the same selection environment. To investigate this phenomenon further, we used 

Wright Fisher simulations of evolutionary dynamics under different population sizes. 

In Chapter 4, we present a generalizable simulation framework to study how differences in the 

sizes of asexual populations adapting to the same environment can translate into divergent fates 

of an important fitness-affecting character. Our simulations reveal that sign epistasis and 

differential mutational supply across fitness-affecting loci can lead to such divergence in 

character fates when present together, but not on their own. Most importantly, our study 

demonstrates that a simple two-locus three-allele landscape with sign epistasis and differential 

supply of mutations is sufficient for translating quantitative differences in population sizes to 

qualitative differences (decay versus enhancement) in character fates in the same environment. 

Chapter 4 thus provides a putative population genetic explanation for divergent character 
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evolution observed in Chapter 3. Sign epistasis is expected to be a very common feature of 

natural fitness landscapes (Szendro et al., 2013a). Moreover, a potential source of differential 

mutational supply loci is the substantial variation in gene length (Eyre-Walker, 1996; 

Moriyama and Powell, 1998; Wright, 1990). Thus, the conditions required for divergent fates 

of a fitness-affecting character are expected to be fairly widespread in asexual populations. 

Chapter 4 thus provides a parsimonious explanation for rapid microevolutionary character 

divergence that does not require the presence of contrasting environmental conditions.  

While Chapter 3 dealt with the phenotypic aspects of divergent character (efflux) evolution in 

the same environment, Chapter 4 provided a simple simulation framework that could reproduce 

this phenomenon in a generalizable manner. A logical next step is to study the molecular details 

of the divergent efflux evolution in the antibiotic cocktail to verify these explanations using 

whole-genome whole-population sequencing. We have already initiated this line of work and 

expect to gain new insights from the resulting data. The latter would also aid in testing some 

key predictions made in Chapter 2. Specifically, these data can be compared with the prediction 

made in terms of the changes in genotypic distributions within populations of different sizes.  

A significant gap in the existing understanding of the population genetics of fitness trade-offs 

concerns the lack of clarity regarding the effects of population size on fitness trade-offs. An 

important contributor to the lack of understanding of the population genetics of fitness trade-

offs concerns the inconsistencies across different studies in the perspectives for studying fitness 

trade-offs across environments. Chapter 5 presents an evolution experiment with E. coli 

populations of two different sizes in multiple nutritionally limited homogenous environments. 

In this study, we looked at trade-offs from three different perspectives and found that regardless 

of the choice of perspectives, larger populations evolved greater fitness trade-offs. Importantly, 

our results were robust to changes in the identity of the environmental pair across which trade-

offs were studied. This is the first study to propose and demonstrate a simple relationship 

between population size and fitness trade-offs and should add to the current understanding of 

the population genetics of ecological specialization.  

We note that the results of Chapter 5 corroborate the results of Chapter 3, which revealed that 

adapting in larger populations could be disadvantageous to fitness in other environments. On 

the one hand, the selection environment in Chapter 3 contained a cocktail of three antibiotics 

while the alternate environments offered diverse challenges to bacterial fitness. On the other 

hand, the experiment of Chapter 5 had  multiple selection environments based on different 
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individual carbon sources. Moreover, while the experiment of Chapter 3 did not involve 

reciprocal selection and fitness measurements in multiple environments, the experiment of 

Chapter 5 did so. Overall, the congruence between the observations of Chapter 3 and Chapter 

5 shows that adapting in larger numbers can make asexual populations suffer greater fitness 

trade-offs. This result can be particularly relevant in scenarios where the environment abruptly 

shifts between two states that exhibit fitness trade-offs with each other. Such sudden 

environmental shifts are routinely encountered by bacteria. For example, pathogens have been 

shown to experience fitness trade-offs when they migrate across different hosts (Smith-Tsurkan 

et al., 2010; Turner and Elena, 2000). Our results predict that larger populations would suffer 

heavier fitness trade-offs across environments and evolve greater extent of ecological 

specialization. Thus, our results show that adapting to a single host in larger numbers for 

several hundred generations should lead to specialist pathogens with narrow host ranges. Thus, 

our results can have practical implications for scenarios where fitness trade-offs play an 

important role.  

Following up on the observations of Chapter 5, Chapter 6 offers a novel explanation for the 

scarcity of detectable fitness costs in evolutionary and ecological studies. Here we conducted 

an evolution experiment with E. coli populations of two different sizes in a heterogeneous 

environment (randomly fluctuating across four different sole carbon sources) and four distinct 

homogenous environments, each with one of the above four sole carbon sources. To the best 

of our knowledge, this is the only experimental evolution study carried out in heterogenous 

environments at multiple population sizes. We found that population size has opposite 

relationships with fitness costs in homogenous and heterogenous environments. Specifically, 

in heterogenous environments, smaller populations suffered more fitness costs than the larger 

ones. Interestingly, the larger populations evolved in the heterogeneous environments not only 

avoided all fitness costs under consideration, but also showed simultaneous adaptation to a pair 

of environments known to show strong fitness trade-offs with each other. On the contrary, in 

homogenous environments, the larger populations suffered greater fitness costs than the 

smaller ones. Previous studies suggest that the magnitudes of fitness costs should be lower in 

heterogenous environments as compared to homogenous ones (Bono et al., 2017), predicting 

that multiple selection pressures faced in a heterogenous environment should lead to cost 

avoidance. However, we found that cost avoidance depends on an interplay between 

environmental heterogeneity and population size. The simultaneous presence of large 

population size and heterogenous environment led to the avoidance of fitness costs, but neither 
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of these two factors could lead to cost avoidance on their own. Importantly, we explain why 

large populations can avoid fitness costs while evolving in a heterogenous environment even 

when most mutations show antagonistic pleiotropy across different environmental components. 

The observations of Chapter 6 cannot be accounted for by any of the conventional explanations 

for the lack of detectable fitness costs, which include the experimental setup’s failure to provide 

the relevant conditions to express costs (Coustau et al., 2000), high statistical demands of 

detecting antagonistic pleiotropy (Ågren et al., 2013; Anderson et al., 2013; Bono et al., 2017; 

Coustau et al., 2000), and inadequate experimental durations (Jasmin and Kassen, 2007a; 

Satterwhite and Cooper, 2015; Schick et al., 2015; Velicer and Lenski, 1999). Instead, our 

experiments suggest that asexual populations that have a history of evolving in unstable 

environments in large numbers can harbour mutations that are simultaneously beneficial in 

multiple environmental components. Importantly, the explanation of our results pertains to the 

generic concept of fitness costs across different environments in asexual microbial populations. 

The natural environments of human microbial pathogens routinely fluctuate between drug-

containing and drug-free conditions. If our prediction regarding the evolution of fitness costs 

in fluctuating environments also applies to costs of antibiotic resistance, lack of proper sanitary 

conditions (which would result in large microbial population sizes) itself should result in the 

evolution and vigorous spread of cost-free resistance, even if most mutations that provide 

antibiotic resistance carry a cost in drug-free conditions. Therefore, a clear future extension of 

Chapter 6 is to directly study the evolution of antibiotic resistance and its costs in an experiment 

with multiple population sizes where the environment fluctuates between antibiotic-containing 

and antibiotic-free states.   

We note that this thesis deals exclusively with asexual systems. One of the principal messages 

of Chapter 2 is that the conventional measure of population size (HM) fails to explain the fitness 

trajectories of asexual populations with fluctuating sizes. As discussed earlier, this is partly due 

to wastage of several beneficial mutations due to clonal interference. Interestingly, HM is also 

the conventional measure of population size in sexual populations (Charlesworth, 2009; 

Kosheleva and Desai, 2018; McDonald et al., 2016; Rice, 2004). Since clonal interference is 

not as relevant in sexual populations due to recombination, it is possible that HM succeeds in 

explaining the trajectories of fitness in sexual populations. There are no empirical or theoretical 

tests of this idea, and due caution should be observed while extrapolating our results to sexual 

populations.  
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Finally, the phenomenon of horizontal gene transfer (HGT) across microbial taxa is a 

significant source of adaptive variation in microbial communities (Niehus et al., 2015; 

Springael and Top, 2004; Wiedenbeck and Cohan, 2011). The variation provided by HGT 

transcends single-species microbial populations, and when such variation becomes adaptively 

relevant, the concept of single-species microbial populations needs to be re-evaluated (Joyce 

et al., 2002). We note that the observations of this thesis do not apply to systems where HGT 

plays a significant role and testing how HGT alters our predictions, particularly in the context 

of microbial communities, can be of considerable interest.  
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Appendix 1 

 

Culture environment for experimental evolution: 

24 independent bacterial populations Escherichia coli K-12 MG1655 were grown in Nutrient 

Broth with a fixed concentration of an antibiotic cocktail containing a mixture of three 

antibiotics at the following sub-lethal concentrations: 

1. Norfloxacin (0.015 μg/ml)  

2. Rifampicin (6 μg/ml) 

3. Streptomycin (0.1 μg/ml) 

 

Composition of Nutrient Broth (Himedia Laboratories Pvt. Ltd.):  

• Peptic digest of animal tissue (5 g/l) 

• Sodium chloride (5 g/l) 

• Beef extract (1.50 g/l) 

• Yeast extract (1.50 g/l) 
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Appendix 2 

 

Algorithm for the individual based model used in this study: 

Our model simulates the growth of individual bacteria in density-dependent resource-limited 

conditions. Each bacterium is represented by an array which has the following components: 

1. Determinant of efficiency (K_eff): determines how much food can be assimilated per 

unit time 

2. Determinant for threshold (thres): how much food needs to be assimilated in order to 

divide 

3. Bodymass: how big is the bacterium (where is it along its cell cycle) at any given time 

 

At the beginning of the simulation, two global scaling quantities, Food_Proxy and Body_Proxy 

are declared for the whole population. As the names suggest, Food_Proxy acts as a proxy for 

the amount of available resources initially, while Body_Proxy (=250) is a proxy for bodymass 

of the ancestor. Each simulation run is started with 100 individuals and each individual is 

allotted K_effi value given as Effi * Food_Proxy. Here, Effi is a random number picked from a 

uniform distribution U(0.95-1.05) and K_effi determines how much food would be consumed 

in a density–dependent manner and when its food consumption would stop (as per the 

conditions given below). Similarly, the parameter for the threshold for each of the 100 starting 

individuals is assigned as a random number picked from a uniform distribution between 

0.95*(Body_Proxy) and 1.05*(Body_Proxy). 

Each bacterium has the same initial biomass (an arbitrarily small quantity, 10 units in this case). 

Time is implicitly defined in our code and each iteration signifies one unit of time. 

In each iteration, each bacterium “grows and divides” according to the following rules: 

If for bacterium i, (population size/ K_effi) ≥ 1, it doesn’t eat anything: its bodymass 

remains the same as the earlier iteration. 

If for bacterium i (population size/ K_effi) < 1, it eats 10*(1 - (population size/ K_effi)) 

units of food in this iteration: its bodymass increases by 10*(1- (population size/ K_effi) units). 

If at the end of this iteration, bodymassi > thresi, bacterium i divides into two equal 

parts. A small thermodynamic cost (constant for all individuals) is deducted so that the sum of 



 

160 
 

the bodymass of the daughter cells is exactly 1 unit less than the bodymass of the mother cell 

at the time of division. 

If the bacterium divides, there is a 1 in 100 chance for each of the daughter cells that 

it mutates. If a mutation occurs, the new parameter for efficiency is drawn from an already 

defined normal distribution that is used throughout the simulation. The same applies to 

threshold. (Threshold and efficiency mutate independently in each bacterium.) 

The total size of the population is saved at the end of every iteration. The total amount 

of food consumed during each iteration is also computed. 

The above description (italics) represents all the processes that happen within an iteration.  

The process is repeated (and the population grows) until the following conditions are fulfilled:   

1. The number of iterations is greater than 2000. 

2. The amount of food consumed during each iteration < 0.08* Food_Proxy 

If the above conditions are met simultaneously, food consumption is stopped, a defined fraction 

of individuals are sampled randomly and the whole process is started with this sample 

population (this represents bottlenecking). The above process is continued for q bottlenecks. 

The bottleneck ratio and the number q are predefined, depending upon the type of population 

being studied. This gives rise to q sigmoidal growth curves. Two quantities are extracted from 

each sigmoidal curve: 

1. Carrying capacity (K, the maximum size of the population in each growth phase) 

2. Maximum linear growth rate (R, the maximum slope of population growth over 100 

iterations). Straight lines were fit on overlapping moving windows of 100 iterations on 

the entire time-series of population size values within each growth-phase. The 

maximum value of the slope observed within the entire time-series of population size 

values (sigmoidal curve) was taken to be the maximum growth rate (R). 

Time series of carrying capacities and maximum growth rates are computed using the series of 

q sigmoidal curves. 

In each simulation used in this study, the carrying capacity of the first growth phase was ≈ 

1.8*Food_Proxy. The value of Food_Proxy was adjusted in such a way that it gave rise to the 

desired value of the carrying capacity of the first growth phase in a simulation. The carrying 

capacities corresponding to the subsequent growth phases was an emergent result of Darwinian 
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evolution in the simulations. A summary of the key differences between our model and 

previous theoretical studies is given below in Table A2.1. 

 

Property 

Wahl and 
Gerrish 
(2001) 

Desai and 
Fisher 
(2007) 

Campos 
and Wahl 

(2009) 

Campos 
and Wahl 

(2010) 

Wahl and 
Zhu (2015) 

Our study 

Direct analysis of 
bottlenecks 

Yes No Yes Yes Yes Yes 

Direct predictions 
about EoA 

No Yes No No No Yes 

Deleterious 
mutations present 

No No Yes Yes Yes 
Yes 

(Majority) 

Clonal interference 
allowed 

No Yes Yes Yes No Yes 

Size(s) of distinct 
beneficial mutations 

Not 
applicable 

Constant Variable Constant* 
Not 

applicable 
Variable 

Variable Nf across 
populations being 
compared 

No 
Not 

applicable 
No No No Yes 

Evolution in resource 
limited conditions 

No No No No Yes Yes 

Overlapping 
generations 

Yes No No No Yes Yes 

 

Table A2.1. A summary of the key differences between our model and previous theoretical 

studies.  

*While assuming that distinct beneficial mutations can have different effects, Campos and 

Wahl (2010) arrive at an expression of Ne that itself depends upon the size of such effects 

(sb). They then state that “Clearly an effective population size that depends on sb is 

unsatisfactory.” Then they assume that “all beneficial mutations have the same effect” to 

arrive at a much simpler expression. 
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Appendix 3 

Parameter and distribution settings for the individual based simulations in Chapter 2 

Table A3.1. The simulation settings used in the individual-based simulations  

Population type Food_proxy Bottleneck 

ratio 

Number of bottlenecks 

(400 generations) 

XX’ 2*104 1/10 120 

SS’ 105 1/102 60 

SL’ 5*106 1/104 30 

BN1 5*103 1/10 120 

BN2 5*104 1/102 60 

BN3 5*105 1/103 40 

BN4 5*106 1/104 30 

SM1 5*103 1/10 120 

SM4 5*106 1/104 30 

HB 5*106 1/104 30 

LB 2*104 1/10 120 

LBbar 1.25*103 1/10 120 

MBbar 2.5*104 1/102 60 

SNFBN1 5*104 1/10 120 

SNFBN2 5*104 1/102 60 

SNFBN4 5*104 1/104 30 

Fig. 2.10a (small bottleneck 

size) 

5*104 1/10 120 

Fig. 2.10a (large bottleneck 

size) 

5*106 1/10 120 

Fig. 2.10b (small bottleneck 

size) 

5*104 1/103 40 

Fig. 2.10b (large bottleneck 

size) 

5*106 1/103 40 

Fig. 2.10c (small bottleneck 

size) 

5*105 1/104 30 

Fig. 2.10c (large bottleneck 

size) 

5*106 1/104 30 

Fig. 2.11a (lenient 

bottleneck) 

5*102 1/10 120 

 

Fig. 2.11a (harsh bottleneck) 5*106 1/105 24 

Fig. 2.11b (lenient 

bottleneck) 

5*104 1/10 120 

Fig. 2.11b (harsh bottleneck) 5*106 1/103 40 

Fig. 2.11c (lenient 

bottleneck) 

5*105 1/10 120 

Fig. 2.11c (harsh bottleneck) 5*107 1/103 40 

Fig. 2.11d (lenient 

bottleneck) 

5*106 1/10 120 

Fig. 2.11d (harsh bottleneck) 5*107 1/102 60 
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Table A3.2. Distributions for parameters used in simulations 

Distribution used for Distribution for efficiency 

parameter 

Distribution for threshold 

parameter 

Starting the simulation Uniform random 

(0.95,1.05) 

Uniform random 

(237.5,262.5) 

Mutation Normal random (0.9,0.22) Normal random (1.1,0.22) 
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Appendix 4 

 

Statistical analysis of the empirical results of Chapter 2 

 

Generation 
ANOVA 

F(2,21) 

ANOVA 

P 

Holm-Šidàk 

corrected P 

Tukey  

P  

LL-SL 

Tukey  

P  

LL-SS 

Tukey  

P  

SL-SS 

40 36.75 1.4E-7 1E-6 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

80 13.319 0.0002 0.0011 

 

0.0001 

 

 

0.0001 

 

 

0.7942 

 

120 14.365 0.0001 0.0008 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

160 17.282 3.7E-5 0.0003 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

200 2.894 0.0776 - 
 

- 

 

- 

 

- 

240 9.359 0.0012 0.0050 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

280 12.110 0.0003 0.0016 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

320 6.769 0.0054 0.0161 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

~ 390 3.33 0.0556 - 

 

- 

 

 

- 

 

 

- 

 

 

Table A4.1. A summary of statistical analysis of carrying capacity (K) measurements in 

empirical populations. The values in red represent statistically significant difference (P < 

0.05). The P-values corresponding to nine independent ANOVAs (corresponding to nine 

different time points) were subjected to Holm-Šidàk correction. Post-hoc (Tukey) comparisons 

were done only in cases where the ANOVA P-values were less than 0.05 after Holm-Šidàk 

correction. These post–hoc comparisons were done for three pairwise differences (LL-SL, LL-

SS, and SL-SS) at each time point. Holm-Šidàk correction was not done on Tukey P-values. 

The P-values are reported to four decimal places.  
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Generation 
ANOVA 

F(2,21) 

ANOVA 

P 

Holm-Šidàk 

corrected P 

Tukey  

P  

LL-SL 

Tukey  

P  

LL-SS 

Tukey  

P  

SL-SS 

40 
56.631 

 

3.5E-9 

 

3.1E-8 

 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

80 
5.996 

 

0.0087 

 

0.0344 

 

 

0.0001 

 

 

0.0001 

 

 

0.3229 

 

120 
12.027 

 

0.0003 

 

0.0023 

 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

160 
12.287 

 

0.0003 

 

0.0023 

 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

200 
3.093 

 

0.0665 

 

0.1286 

 

 

- 

 

- 

 

- 

240 
8.757 

 

0.0017 

 

0.0103 

 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

280 
7.785 

 

0.0030 

 

0.0147 

 

 

0.0001 

 

 

0.0001 

 

 

0.0001 

 

320 
4.096 

 

0.0315 

 

0.0915 

 

 

- 

 

- 

 

- 

~ 390 
0.925 

 

0.4122 

 

- 

 

 

- 

 

- 

 

- 

 

Table A4.2. A summary of statistical analysis of maximum growth rate (R) measurements 

in empirical populations.  The values in red represent statistically significant difference (P < 

0.05). The values in red represent statistically significant difference (P < 0.05). The P-values 

corresponding to nine independent ANOVAs (corresponding to nine different time points) 

were subjected to Holm-Šidàk correction. Post-hoc (Tukey) comparisons were done only in 

cases where the ANOVA P-value was less than 0.05 after Holm-Šidàk correction. These post–

hoc comparisons were done for three pairwise differences (LL-SL, LL-SS, and SL-SS) at each 

time point. Holm-Šidàk correction was not done on Tukey P-values. The P-values are reported 

to four decimal places. 
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Appendix 5 

 

Details of the protocol used for measuring energy-dependent efflux activity: 

We used a previously-established fluorescence-based assay for measuring energy-dependent 

efflux activity (EA) in Gram negative bacteria (Karve et al., 2015; Webber and Coldham, 

2010). We used a small molecule (bis-benzimide) that enters bacterial cells and fluoresces after 

intercalating with DNA (bis-benzimide excites at 355 nm and emits at 465 nm). The details of 

the protocol are as follows: 

• Cryostocks belonging to each of the 25 populations (24 descendants and 1 ancestor) 

were revived in Nutrient Broth (NB) for 18 hours. 

• The revived populations were brought to similar sizes by dilutions with (NB) so that 

the OD at 600 nm was between 0.03 and 0.06 when measured using Nanodrop (Thermo 

Scientific, 2000). 

• The above cultures (with similar sizes) were centrifuged at 13,400 rpm for 2 minutes. 

The supernatant was discarded, and PBS buffer (at pH 7.4) was used to resuspend the 

pellet.  

• A small aliquot of the ancestral culture was heated at 60 ᴼC to set the upper range of 

fluorescence gain. 

• 8 μl of glucose solution (1% w/v) was also added because the aim was to measure 

energy-dependent efflux activity. 

• 20 μl of bis-benzimide was added to each well containing 168 μl live culture. The same 

volume of bis-benzimide was also added to the control well with dead cells.  

• An automated plate reader (Tecan Infinite M200 Pro) was used to measure 

fluorescence.  
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Initially, we measured fluorescence for 40 min. All the fluorescence curves had reached 

a steady state by 35 min.  

• After 40 minutes, the plate was taken out and 4 μl of a non-specific inhibitor of active 

efflux was added to all the wells. The inhibitor of efflux used in our study was CCCP 

(Carbonyl Cyanide m-Chlorophenylhydrazone; C2759 Sigma). 

• The measurement of fluorescence was resumed and continued for a further 30 minutes 

so that a new steady state could be reached by all the fluorescent curves. 

• Efflux activity was measured using the following formula:  

(Fluorescence at 70 min – Fluorescence at 35 min) / (Fluorescence at 35 min) 
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Appendix 6 

 

Statistical details of ANOVAs done separately in each alternative environment (Chapter 

3): 

 

Table A6.1. Summary of the statistical analysis done separately for each of the four alternative 

environments in terms of K. Statistically significant P values are shown in red. The False 

Discover Rate (FDR) used here is 0.15 (McDonald, 2009). Partial η2 was interpreted as: Partial 

η2 < 0.06 (small effect); 0.06 < Partial η2 < 0.14 (medium effect); 0.14 < Partial η2 (large effect). 

Cohen’s d was interpreted as: 0.2 < d < 0.5 (small effect), 0.5 < d < 0.8 (medium effect); d > 

0.8 (large effect). Tukey’s post-hoc test was done only when the ANOVA results were 

significant after the Benjamini Hochberg procedure. Cohen’s d was interpreted only when the 

pairwise differences (revealed by Tukey’s post-hoc test) were significant.  

 

 

Table A6.2. Summary of the statistical analysis done separately for each of the four alternative 

environments in terms of R. Statistically significant P values are shown in red. The False 

Discover Rate (FDR) used here is 0.15 (McDonald, 2009). Partial η2 , Tukey’s post-hoc test, 

and  Cohen’s d were interpreted as described above for Table A6.1. 
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Appendix 7 

 

Ancestral fitness values in the alternative environments (Chapter 3): 

 

Alternative environment K R 

Sorbitol 0.652 0.054 

Ampicillin 0.836 0.118 

Urea 0.427 0.049 

Copper 0.924 0.170 
 

Table  A7.1. Fitness values of the common ancestor in the four alternative environments in 

terms of K and R.  
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Appendix 8 

Details of the ancestral strain and media compositions in Chapter 5 and Chapter 6: 

Ancestral strain: Escherichia coli MG1655 lacY::kan (resistant to kanamycin). 

Composition of the minimal media: Our experiment involved four different M9-based 

minimal media, each containing one of the following as the only source of carbon: 

1. Thymidine 

2. Galactose 

3. Maltose 

4. Sorbitol 

1 litre of each minimal medium contained the following: 

• 12.8 g Na2HPO4.7H2O 

• 3.0 g KH2PO4 

• 0.5 g NaCl 

• 1.0 g NH4Cl 

• 240.6 mg MgSO4 

• 11.1 mg CaCl2 

• 4g of the pre-decided carbon source 

• 50 mg Kanamycin sulphate  
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Appendix 9 

Analysis using single-sample t-tests in Chapter 5: 

Population 

type 

Assay 

environment 

P value Corrected P 

value 

Cohen’s d 

(Effect size) 

TL Thy 8.100 × 10-7 3.240 × 10-6 12.129 (large) 

TL Gal 8.943 × 10-5 2.683 × 10-4 - 4.670 (large) 

TL Mal 5.553 × 10-4  5.553 × 10-4 - 3.187 (large) 

TL Sor 1.135 × 10-4 2.270 × 10-4 - 4.445 (large) 

TS Thy 1.832 × 10-4 7.327 × 10-4 4.024 (large) 

TS Gal 6.839 × 10-3 6.839 × 10-3 - 1.807 (large) 

TS Mal 4.576 × 10-4  1.372 × 10-3 - 3.318 (large) 

TS Sor 6.190 × 10-4 1.238 × 10-3 - 3.111 (large) 

GL Thy 0.003 0.013 - 2.158 (large)  

GL Gal 0.016 0.049 1.448 (large) 

GL Mal 0.633 0.633 - 

GL Sor 0.973 0.973 - 

GS Thy 0.122 0.122 - 

GS Gal 0.617 0.617 - 

GS Mal 0.483 0.483 - 

GS Sor 0.016 0.061 - 

 

Table A9.1. Single-sample t-tests against the ancestral fitness values (N = 6). The fourth 

column shows Holm-Šidák corrected P values. Effect sizes were interpreted as the following: 

0.2 < d < 0.5 (small effect), 0.5 < d < 0.8 (medium effect); d > 0.8 (large effect). Effect sizes 

were not interpreted for cases where Holm-Šidák corrected P > 0.05. 
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Population 

type 

Home-Away 

pair 

P value Corrected P 

value 

Cohen’s d 

(Effect size) 

TL T-G 6.481 × 10-8 6.481 × 10-8 20.131 (large) 

TL T-M 2.467 × 10-8 7.402 × 10-8 24.427 (large) 

TL T-S 5.935 × 10-8 1.187 × 10-7 20.490 (large) 

TS T-G 5.633 × 10-5 5.633 × 10-5 5.136 (large) 

TS T-M 5.490 × 10-5 1.098 × 10-4 5.163 (large) 

TS T-S 4.714 × 10-5  1.414 × 10-4 5.328 (large) 

GL G-T 1.830 × 10-4 5.488 × 10-4 4.025 (large) 

GL G-M 2.217 × 10-4 4.434 × 10-4 3.866 (large) 

GL G-S 5.910 × 10-3 5.910 × 10-3 1.873 (large) 

GS G-T 0.232 0.232 - 

GS G-M 0.504 0.504 - 

GS G-S 0.061 0.061 - 

 

Table A9.2. Single-sample t-tests against the ancestral reaction norm slopes (N = 6). The 

fourth column shows Holm-Šidák corrected P values. Effect sizes were interpreted as the 

following: 0.2 < d < 0.5 (small effect), 0.5 < d < 0.8 (medium effect); d > 0.8 (large effect). 

Effect sizes were not interpreted for cases where Holm-Šidák corrected P > 0.05. 
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Appendix 10 

Statistical summary for the analyses carried out in Chapter 6: 

Selection 

environment 

Population 

type 

Assay 

environment 

P value Corrected P 

value 
Inference 

Heterogeneous  FL Thy 1.58 × 10-5 6.33 × 10-5 Adaptation 

Heterogeneous  FL Gal 7.025 × 10-3 0.021 Adaptation 

Heterogeneous  FL Mal 0.564 - - 

Heterogeneous FL Sor 0.612 - - 

Heterogeneous  FS Thy 0.049 0.049 Adaptation 

Heterogeneous  FS Gal 0.025 0.051 Maladaptation 

Heterogeneous  FS Mal 2.5 × 10-4 0.001 Maladaptation 

Heterogeneous FS Sor 0.009 0.02635 Maladaptation 

Homogeneous TL Thy 8.1 × 10-7 3.24 × 10-6 Adaptation 

Homogeneous TL Gal 8.94 × 10-5 2.68 × 10-4 Maladaptation 

Homogeneous TL Mal 5.53 × 10-4 5.53 × 10-4 Maladaptation 

Homogeneous TL Sor 1.13 × 10-4 2.27 × 10-4 Maladaptation 

Homogeneous TS Thy 1.83 × 10-4 7.33 × 10-4 Adaptation 

Homogeneous TS Gal 6.839 × 10-3 6.839 × 10-3 Maladaptation 

Homogeneous TS Mal 4.58 × 10-4 1.372 × 10-3 Maladaptation 

Homogeneous TS Sor 6.19 × 10-4 1.238 × 10-3 Maladaptation 

Homogeneous GL Thy 0.003 0.013 Maladaptation 

Homogeneous GL Gal 0.016 0.049 Adaptation 

Homogeneous GL Mal 0.633 0.633 - 

Homogeneous GL Sor 0.973 0.973 - 

Homogeneous GS Thy 0.122 0.122 - 

Homogeneous GS Gal 0.617 0.617 - 

Homogeneous GS Mal 0.483 0.483 - 

Homogeneous GS Sor 0.016 0.061 - 

     continued 
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continued      

Selection 

environment 

Population 

type 

Assay 

environment P value 

Corrected P 

value Inference 

Homogeneous ML Thy 0.252 - - 

Homogeneous ML Gal 0.036 0.134661 - 

Homogeneous ML Mal 0.090 - - 

Homogeneous ML Sor 0.762 - - 

Homogeneous MS Thy 0.134 - - 

Homogeneous MS Gal 0.164 - - 

Homogeneous MS Mal 0.066 - - 

Homogeneous MS Sor 0.069 - - 

Homogeneous SL Thy 3.14 × 10-4 1.257 × 10-3 Maladaptation 

Homogeneous SL Gal 7.59 × 10-3 0.023 Maladaptation 

Homogeneous SL Mal 0.088 - - 

Homogeneous SL Sor 0.690 - - 

Homogeneous SS Thy 5.5 × 10-3 0.011 Maladaptation 

Homogeneous SS Gal 6.4 × 10-5 2.56 × 10-4 Maladaptation 

Homogeneous SS Mal 0.001 0.003 Maladaptation 

Homogeneous SS Sor 0.366 - - 

 

Table A10.1. Analysis of adaptation and maladaptation events in all ten evolutionary lines 

using single-sample t tests (N = 6) with reference to the ancestral fitness in each carbon source 

(scaled to 1) followed by Holm-Sidak corrections.   
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Selection 

environment 

Population 

type 

P value Inference 

Heterogeneous  FL 0.002 GM enhanced 

Heterogeneous  FS 0.584 - 

Homogeneous TL 0.703 - 

Homogeneous TS 0.826 - 

Homogeneous GL 0.922 - 

Homogeneous GS 0.026 GM reduced 

Homogeneous ML 0.027 GM reduced 

Homogeneous MS 0.069 - 

Homogeneous SL 0.034 GM reduced 

Homogeneous SS 5.96 × 10-4 GM reduced 

   

Table A10.2. Summary of single-sample t-tests (N = 6) of differences in the geometric mean 

fitness (calculated over the four carbon sources) of the ten evolutionary lines with the 

corresponding ancestral value (= 1).  
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Selection 

environment 

Population 

type 

P value (Dunnett 

(reference: FL)) 

P value (Dunnett 

(reference: FS)) 

Heterogeneous  FL - 8.508 × 10-6 

Heterogeneous  FS 8.508 × 10-6 - 

Homogeneous TL 2.214 × 10-5 0.992 

Homogeneous TS 1.222 × 10-5 0.999 

Homogeneous GL 1.260 × 10-5 0.999 

Homogeneous GS 6.865 × 10-6 0.652 

Homogeneous ML 6.872 × 10-6 0.737 

Homogeneous MS 6.855 × 10-6 0.302 

Homogeneous SL 6.853 × 10-6 0.036 

Homogeneous SS 6.853 × 10-6 0.007 

 

Table A10.3. Summary of Dunnett post-hoc tests (N = 6) with respect to FL and FS done after 

an analysing the geometric mean fitness differences across the ten evolutionary lines using a 

mixed model ANOVA (see section 6.2 (Chapter 6)). This analysis revealed a significant main 

effect of the identity of the evolutionary line: F9,45 = 14.566, P = 1.129 × 10-6. 
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